Skip to main content

Determinism and Computational Power of Real Measurement-Based Quantum Computation

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10472))

Included in the following conference series:

Abstract

Measurement-based quantum computing (MBQC) is a universal model for quantum computation. The combinatorial characterisation of determinism in this model, powered by measurements, and hence, fundamentally probabilistic, is the cornerstone of most of the breakthrough results in this field. The most general known sufficient condition for a deterministic MBQC to be driven is that the underlying graph of the computation has a particular kind of flow called Pauli flow. The necessity of the Pauli flow was an open question. We show that Pauli flow is not necessary, providing several counter examples. We prove however that Pauli flow is necessary for determinism in the real MBQC model, an interesting and useful fragment of MBQC.

We explore the consequences of this result for real MBQC and its applications. Real MBQC and more generally real quantum computing is known to be universal for quantum computing. Real MBQC has been used for interactive proofs by McKague. The two-prover case corresponds to real-MBQC on bipartite graphs. While (complex) MBQC on bipartite graphs are universal, the universality of real MBQC on bipartite graphs was an open question. We show that real bipartite MBQC is not universal proving that all measurements of real bipartite MBQC can be parallelised leading to constant depth computations. As a consequence, McKague’s techniques cannot lead to two-prover interactive proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A completely positive trace-preserving map describes the evolution of a quantum system which state is represented by a density matrix. See for instance [15] for details.

  2. 2.

    In both cases the unique measurement consists of measuring a qubit in state \(\left| + \right\rangle \) according to the observable \(-X\) which produces the signal \(s_1=1\) with probability 1.

  3. 3.

    In [4], an example of deterministic MBQC with no Pauli flow is given. This is however not a counter example to the necessity of the Pauli flow as the example is not robustly deterministic. More precisely not all the branches of computation occur with the same probability: with the notation of Fig. 8 in [4] if measurements of qubits 4, 6, 8 produce the outcome 0, then the measurement of qubit 10 produces the outcome 0 with probability 1.

  4. 4.

    The proof of Theorem 3 is available in the pre-print version of the present article [16].

References

  1. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26, 1411–1478 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009 (2009). http://www.citebase.org/abstract?id=oai:arXiv.org:0807.4154

  3. Broadbent, A., Kashefi, E.: Parallelizing quantum circuits. Theor. Comput. Sci. 410(26), 2489–2510 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Browne, D.E., Kashefi, E., Mhalla, M., Perdrix, S.: Generalized flow and determinism in measurement-based quantum computation. New J. Phys. (NJP) 9(8) (2007). http://iopscience.iop.org/1367-2630/9/8/250/fulltext/

  5. Browne, D., Kashefi, E., Perdrix, S.: Computational depth complexity of measurement-based quantum computation. In: van Dam, W., Kendon, V.M., Severini, S. (eds.) TQC 2010. LNCS, vol. 6519, pp. 35–46. Springer, Heidelberg (2011). doi:10.1007/978-3-642-18073-6_4

    Chapter  Google Scholar 

  6. Danos, V., Kashefi, E.: Determinism in the one-way model. Phys. Rev. A 74(052310) (2006)

    Google Scholar 

  7. Danos, V., Kashefi, E., Panangaden, P.: The measurement calculus. J. ACM 54(2) (2007)

    Google Scholar 

  8. Danos, V., Kashefi, E., Panangaden, P., Perdrix, S.: Extended Measurement Calculus. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  9. Delfosse, N., Guerin, P.A., Bian, J., Raussendorf, R.: Wigner function negativity and contextuality in quantum computation on rebits. Phys. Rev. X 5(2), 021003 (2015)

    Google Scholar 

  10. Hamrit, N., Perdrix, S.: Reversibility in extended measurement-based quantum computation. In: Krivine, J., Stefani, J.-B. (eds.) RC 2015. LNCS, vol. 9138, pp. 129–138. Springer, Cham (2015). doi:10.1007/978-3-319-20860-2_8

    Chapter  Google Scholar 

  11. Hein, M., Eisert, J., Briegel, H.J.: Multi-party entanglement in graph states. Phys. Rev. A 69, 062311 (2004). doi:10.1103/PhysRevA.69.062311

    Article  MathSciNet  MATH  Google Scholar 

  12. McKague, M.: Interactive proofs for BQP via self-tested graph states. Theory Comput. 12(3), 1–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mhalla, M., Perdrix, S.: Finding optimal flows efficiently. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 857–868. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70575-8_70

    Chapter  Google Scholar 

  14. Mhalla, M., Perdrix, S.: Graph states, pivot minor, and universality of (X, Z)-measurements. Int. J. Unconv. Comput. 9(1–2), 153–171 (2013)

    Google Scholar 

  15. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  16. Perdrix, S., Sanselme, L.: Determinism and computational power of real measurement-based quantum computation (2016). arXiv preprint arXiv:1610.02824

  17. Prevedel, R., Walther, P., Tiefenbacher, F., Bohi, P., Kaltenbaek, R., Jennewein, T., Zeilinger, A.: High-speed linear optics quantum computing using active feed-forward. Nature 445(7123), 65–69 (2007). doi:10.1038/nature05346

    Article  Google Scholar 

  18. Raussendorf, R.: Contextuality in measurement-based quantum computation. Phys. Rev. A 88(2), 022322 (2013)

    Article  Google Scholar 

  19. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  Google Scholar 

  20. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation with cluster states. Phys. Rev. A 68, 022312 (2003). http://arxiv.org/abs/quant-ph/0301052

  21. Raussendorf, R., Harrington, J., Goyal, K.: A fault-tolerant one-way quantum computer. Ann. Phys. 321(9), 2242–2270 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Walther, P., Resch, K.J., Rudolph, T., Schenck, E., Weinfurter, H., Vedral, V., Aspelmeyer, M., Zeilinger, A.: Experimental one-way quantum computing. Nature 434(7030), 169–176 (2005). doi:10.1038/nature03347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Perdrix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Perdrix, S., Sanselme, L. (2017). Determinism and Computational Power of Real Measurement-Based Quantum Computation. In: Klasing, R., Zeitoun, M. (eds) Fundamentals of Computation Theory. FCT 2017. Lecture Notes in Computer Science(), vol 10472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55751-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55751-8_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55750-1

  • Online ISBN: 978-3-662-55751-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics