Skip to main content

A Half-Subtracter Calculation Model Based on Stand Displacement Technology

  • Conference paper
  • First Online:
Bio-Inspired Computing -- Theories and Applications (BIC-TA 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 562))

Included in the following conference series:

Abstract

In this work, we construct a half-subtracter calculation model with the principle of complementary base pairs and the technology of fluorescence labeling through the combination of INH and XOR calculation model. We implement the calculation process of a half-subtracter utilizing the strand displacement technology that two DNA signal strands as the input signal and the intensity of fluorescence as the output signal. The sequence of strands used in the experiment is designed by NUPACK. The simulation experiment is constructed with Visual DSD which is convenient to analyze the experiment results. The results show that the model performs well with high stability and feasibility and decreases the complexity of calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma, L.: Research on application of strand displacement technology in DNA self assembly model. ShannXi: College of life sciences, Shannxi Normal university (2012)

    Google Scholar 

  2. Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  3. Soloveichik, D.G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. USA 107(12), 5393–5398 (2000)

    Article  Google Scholar 

  4. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  5. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475(7356), 368–372 (2011)

    Article  Google Scholar 

  6. Li, W., Yang, Y., Yan, H.: Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement. Nano Lett. 13, 2980–2988 (2013)

    Article  Google Scholar 

  7. Zhang, C., Ma, J., Yang, J.: Control of gold nanoparticles based on circular DNA strand displacement. J. Colloid Interface Sci. 418, 31–36 (2014)

    Article  Google Scholar 

  8. Huang, S., Hu, J.: Sensitive detection of point mutation using exponential strand displacement amplification-based surface enhanced Raman spectroscopy. Biosens. Bioelectron. 65, 191–197 (2015)

    Article  Google Scholar 

  9. Xu, Y., Zhou, W.: Toehold strand displacement-driven assembly of G-quadruplex DNA for enzyme-free and non-label sensitive fluorescent detection of thrombin. Biosens. Bioelectron. 64, 306–310 (2015)

    Article  Google Scholar 

  10. Zhang, C., Yang, J., Wang, S.: Development and application of fluorescence technologyin DNA computing. Chin. J. Comput. 12, 2300–2310 (2009)

    Google Scholar 

  11. Saghatelian, A., Volcker, N.H., Guckian, K.M.: DNA-Based Photonic Logic Gates: AND, NAND, and INHIBIT. J. Am. Chem. Soc. 125, 346–347 (2003)

    Article  Google Scholar 

  12. Zhang, D., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103–113 (2011)

    Article  Google Scholar 

  13. Alex, P., James, H., Alexander, D.: DNA compitation: a photochemically controlled AND gate. J. Am. Chem. Soc. 134, 3810–3815 (2012)

    Article  Google Scholar 

  14. Yang, J., Shen, L., Ma, J.: Fluorescent nanoparticle beacon for logic gate operation regulated by strand displacement. ACS Appl. Mater Interfaces 5, 5392–5396 (2013)

    Article  Google Scholar 

  15. Yang, J., Chen, D.: Logic nanoparticle beacon triggered by the binding-induced effect of multiple inputs. ACS Appl. Mater Interfaces 6, 14486–14492 (2014)

    Article  Google Scholar 

  16. Song, W., Zhang, Q.: Fluorescence aptameric sensor for isothermal circular strand-displacement polymerization amplification detection of adenosine triphosphate. Biosens. Bioelectron. 61, 51–56 (2014)

    Article  Google Scholar 

  17. Feng, C., Dai, S., Wang, L.: Optical aptasensors for quantitative detection of small biomolecules: a review. Biosens. Bioelectron. 59, 64–74 (2014)

    Article  Google Scholar 

  18. Song, T., Pan, L., Wang, J., et al.: Normal forms of spiking neural P systems with anti-spikes. IEEE Trans. NanoBiosci. 11(4), 352–359 (2012)

    Article  Google Scholar 

  19. Yang, C., Hsu, C., Chuang, Y.: Molecular beacon-based half-adder and half-subtractor. Chem. Commun. 48(1), 112–114 (2012)

    Article  Google Scholar 

  20. Yang, C., Chen, Y., Lin, H.: An optical deoxyribonucleic acid-based half-subtractor. Chem. Commun. 49, 8860–8862 (2013)

    Article  Google Scholar 

  21. Song, T., Pan, L., Păun, G.: Asynchronous spiking neural P systems with local synchronization. Inf. Sci. 219, 197–207 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, X., Pan, L., Păun, A.: On the universality of axon P systems. IEEE Trans. Neural Netw. Learn. Syst. (2015). doi:10.1109/TNNLS.2015.2396940

  23. Xu, S., Li, H.: Implementation of half adder and half subtractor with a simple and universal DNA-based platform. NPG Asia Mater. 5, e76 (2013)

    Article  Google Scholar 

  24. Kamin, F.: Calculation model based on nucleic acid logic gate. ShannXi: College of life sciences, Shannxi Normal university (2013)

    Google Scholar 

  25. Shi, X., Wang, Z., Deng, C., Song, T., Pan, L., Chen, Z.: A novel bio-sensor based on DNA strand displacement. PLoS One 9, e108856 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by National Natural Science Foundation of China(Grant Nos. 61272246, 61173113) and Innovation Funds of Graduate Programs Fund of Shaanxi Normal University. The authors acknowledge the anonymous referees suggestion to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yafei Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, M., Liu, F., Song, M., Chen, X., Dong, Y. (2015). A Half-Subtracter Calculation Model Based on Stand Displacement Technology. In: Gong, M., Linqiang, P., Tao, S., Tang, K., Zhang, X. (eds) Bio-Inspired Computing -- Theories and Applications. BIC-TA 2015. Communications in Computer and Information Science, vol 562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49014-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49014-3_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49013-6

  • Online ISBN: 978-3-662-49014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics