Skip to main content

Nano-scale Morphology for Bulk Heterojunction Polymer Solar Cells

  • Chapter
  • First Online:

Part of the book series: Topics in Applied Physics ((TAP,volume 130))

Abstract

In any high performance polymer solar cell, the morphology is always an important aspect. The bulk-heterojunction morphology is a challenging research area, which is the focus of this chapter. Many characterization techniques have been used to investigate the BHJ morphologies of active layers in OPVs; which can be classified into reciprocal-space and real-space techniques. We will discuss both the reciprocal-space techniques generally used to obtain spatially averaged information (X-ray or neutron scattering), as well as real-space techniques for analyzing the phase separation and aggregation of BHJ morphology. Our focus will be on how X-ray scattering and transmission electron microscopy based characterization techniques can be used to analyze the effects of the relative length scales of PCBM clusters and polymer (P3HT as example) crystallites on device performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789–1791 (1995)

    Article  Google Scholar 

  2. S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, A.J. Heeger, Nat. Photonics. 3, 297–303 (2009)

    Google Scholar 

  3. S. Barrau, V. Andersson, F.L. Zhang, S. Masich, J. Bijleveld, M.R. Andersson, O. Inganas, Macromolecules 42, 4646–4650 (2009)

    Article  Google Scholar 

  4. G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, Adv. Funct. Mater. 17, 1636–1644 (2007)

    Article  Google Scholar 

  5. H. Xin, O.G. Reid, G.Q. Ren, F.S. Kim, D.S. Ginger, S.A. Jenekhe, ACS Nano 4, 1861–1872 (2010)

    Article  Google Scholar 

  6. M.Y. Chiu, U.S. Jeng, M.S. Su, K.H. Wei, Macromolecules 43, 428–432 (2010)

    Article  Google Scholar 

  7. Y. Yao, J.H. Hou, Z. Xu, G. Li, Y. Yang, Adv. Funct. Mater. 18, 1783–1789 (2008)

    Article  Google Scholar 

  8. F. Padinger, R.S. Rittberger, N.S. Sariciftci, Adv. Funct. Mater. 13, 85–88 (2003)

    Article  Google Scholar 

  9. D.M. Stevens, Y. Qin, M.A. Hillmyer, C.D. Frisbie, J. Phys. Chem. C 113, 11408–11415 (2009)

    Article  Google Scholar 

  10. S.S. van Bavel, E. Sourty, G. de With, J. Loos, Nano Lett. 9, 507–513 (2009)

    Article  Google Scholar 

  11. S. Honda, T. Nogami, H. Ohkita, H. Benten, S. Ito, Acs. Appl. Mater. Int. 1, 804–810 (2009)

    Article  Google Scholar 

  12. W.C. Tsoi, S.J. Spencer, L. Yang, A.M. Ballantyne, P.G. Nicholson, A. Turnbull, A.G. Shard, C.E. Murphy, D.D.C. Bradley, J. Nelson, J.S. Kim, Macromolecules 44, 2944–2952 (2011)

    Article  Google Scholar 

  13. D.R. Kozub, K. Vakhshouri, L.M. Orme, C. Wang, A. Hexemer, E.D. Gomez, Macromolecules 44, 5722–5726 (2011)

    Article  Google Scholar 

  14. D.A. Chen, A. Nakahara, D.G. Wei, D. Nordlund, T.P. Russell, Nano Lett. 11, 561–567 (2011)

    Article  Google Scholar 

  15. D. Chen, F. Liu, C. Wang, A. Nakahara, T.P. Russell, Nano Lett. 11, 2071–2078 (2011)

    Article  Google Scholar 

  16. G. Li, V. Shrotriya, J.S. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 4, 864–868 (2005)

    Article  Google Scholar 

  17. T. Erb, U. Zhokhavets, G. Gobsch, S. Raleva, B. Stuhn, P. Schilinsky, C. Waldauf, C.J. Brabec, Adv. Funct. Mater. 15, 1193–1196 (2005)

    Article  Google Scholar 

  18. Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J.R. Durrant, D.D.C. Bradley, M. Giles, I. Mcculloch, C.S. Ha, M. Ree, Nat. Mater. 5, 197–203 (2006)

    Article  Google Scholar 

  19. C.H. Woo, B.C. Thompson, B.J. Kim, M.F. Toney, J.M.J. Fréchet, J. Am. Chem. Soc. 130, 16324–16329 (2008)

    Article  Google Scholar 

  20. C.W. Chu, H.C. Yang, W.J. Hou, J.S. Huang, G. Li, Y. Yang, Appl. Phys. Lett. 92, 103306 (2008)

    Google Scholar 

  21. H.Y. Chen, H.C. Yang, G.W. Yang, S. Sista, R.B. Zadoyan, G. Li, Y. Yang, J. Phys. Chem. C 113, 7946–7953 (2009)

    Article  Google Scholar 

  22. S.S. van Bavel, M. Barenklau, G. de With, H. Hoppe, J. Loos, Adv. Funct. Mater. 20, 1458–1463 (2010)

    Article  Google Scholar 

  23. J.S. Moon, J.K. Lee, S.N. Cho, J.Y. Byun, A.J. Heeger, Nano Lett. 9, 230–234 (2009)

    Article  Google Scholar 

  24. J.S. Moon, C.J. Takacs, Y.M. Sun, A.J. Heeger, Nano Lett. 11, 1036–1039 (2011)

    Article  Google Scholar 

  25. M. Pfannmoller, H. Flugge, G. Benner, I. Wacker, C. Sommer, M. Hanselmann, S. Schmale, H. Schmidt, F.A. Hamprecht, T. Rabe, W. Kowalsky, R.R. Schroder, Nano Lett. 11, 3099–3107 (2011)

    Article  Google Scholar 

  26. M.Y. Chiu, U.S. Jeng, C.H. Su, K.S. Liang, K.H. Wei, Adv. Mater. 20, 2573–2578 (2008)

    Google Scholar 

  27. W. Chen, M.P. Nikiforov, S.B. Darling, Energy Environ. Sci. 5, 8045–8074 (2012)

    Article  Google Scholar 

  28. H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A.J. Janssen, E.W. Meijer, P. Herwig, D.M. de Leeuw, Nature 401, 685–688 (1999)

    Article  Google Scholar 

  29. R.J. Kline, M.D. McGehee, E.N. Kadnikova, J.S. Liu, J.M.J. Frechet, M.F. Toney, Macromolecules 38, 3312–3319 (2005)

    Article  Google Scholar 

  30. B.A. Collins, J.E. Cochran, H. Yan, E. Gann, C. Hub, R. Fink, C. Wang, T. Schuettfort, C.R. McNeill, M.L. Chabinyc, H. Ade, Nat. Mater. 11, 536–543 (2012)

    Article  Google Scholar 

  31. M. Kobashi, H. Takeuchi, Macromolecules 31, 7273–7278 (1998)

    Article  Google Scholar 

  32. W.L. Ma, C.Y. Yang, X. Gong, K. Lee, A.J. Heeger, Adv. Funct. Mater. 15, 1617–1622 (2005)

    Article  Google Scholar 

  33. W. Chen, T. Xu, F. He, W. Wang, C. Wang, J. Strzalka, Y. Liu, J.G. Wen, D.J. Miller, J.H. Chen, K.L. Hong, L.P. Yu, S.B. Darling, Nano Lett. 11, 3707–3713 (2011)

    Article  Google Scholar 

  34. W. Yin, M. Dadmun, ACS Nano 5, 4756–4768 (2011)

    Article  Google Scholar 

  35. D. Chirvase, J. Parisi, J.C. Hummelen, V. Dyakonov, Nanotechnology 15, 1317–1323 (2004)

    Article  Google Scholar 

  36. W.R. Wu, U.S. Jeng, C.J. Su, K.H. Wei, M.S. Su, M.Y. Chiu, C.Y. Chen, W.B. Su, C.H. Su, A.C. Su, ACS Nano 5, 6233–6243 (2011)

    Article  Google Scholar 

  37. M.S. Su, C.Y. Kuo, M.C. Yuan, U.S. Jeng, C.J. Su, K.H. Wei, Adv. Mater. 23, 3315–3319 (2011)

    Google Scholar 

  38. H.Y. Lu, B. Akgun, T.P. Russell, Adv. Energy Mater. 1, 870–878 (2011)

    Article  Google Scholar 

  39. L.M. Chen, Z. Xu, Z.R. Hong, Y. Yang, J. Mater. Chem. 20, 2575–2598 (2010)

    Article  Google Scholar 

  40. J.W. Kiel, B.J. Kirby, C.F. Majkrzak, B.B. Maranville, M.E. Mackay, Soft Matter 6, 641–646 (2010)

    Article  Google Scholar 

  41. A.J. Parnell, A.D.F. Dunbar, A.J. Pearson, P.A. Staniec, A.J.C. Dennison, H. Hamamatsu, M.W.A. Skoda, D.G. Lidzey, R.A.L. Jones, Adv. Mater. 22, 2444–2447 (2010)

    Google Scholar 

  42. M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P.G. Etchegoin, Y. Kim, T.D. Anthopoulos, P.N. Stavrinou, D.D.C. Bradley, J. Nelson, Nat. Mater. 7, 158–164 (2008)

    Article  Google Scholar 

  43. Y. Vaynzof, D. Kabra, L.H. Zhao, L.L. Chua, U. Steiner, R.H. Friend, ACS Nano 5, 329–336 (2011)

    Article  Google Scholar 

  44. H.J. Liu, U.S. Jeng, N.L. Yamada, A.C. Su, W.R. Wu, C.J. Su, S.J. Lin, K.H. Wei, M.Y. Chiu, Soft Matter 7, 9276–9282 (2011)

    Article  Google Scholar 

  45. Y.S. Huang, U.S. Jeng, C.H. Hsu, N. Torikai, H.Y. Lee, K. Shin, M. Hino, Phys. B 385, 667–669 (2006)

    Article  Google Scholar 

  46. X.N. Yang, J. Loos, S.C. Veenstra, W.J.H. Verhees, M.M. Wienk, J.M. Kroon, M.A.J. Michels, R.A.J. Janssen, Nano Lett. 5, 579–583 (2005)

    Article  Google Scholar 

  47. W.L. Ma, C.Y. Yang, A.J. Heeger, Adv. Mater. 19, 1387–1390 (2007)

    Google Scholar 

  48. G.R. Strobl, M. Schneider, J. Polym. Sci. Polym. Phys. 18, 1343–1359 (1980)

    Article  Google Scholar 

  49. A.A. Herzing, L.J. Richter, I.M. Anderson, J. Phys. Chem. C 114, 17501–17508 (2010)

    Article  Google Scholar 

  50. K. Vandewal, Z.F. Ma, J. Bergqvist, Z. Tang, E.G. Wang, P. Henriksson, K. Tvingstedt, M.R. Andersson, F.L. Zhang, O. Inganas, Adv. Funct. Mater. 22, 3480–3490 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kung-Hwa Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Su, YW., Chiu, MY., Wei, KH. (2015). Nano-scale Morphology for Bulk Heterojunction Polymer Solar Cells. In: Yang, Y., Li, G. (eds) Progress in High-Efficient Solution Process Organic Photovoltaic Devices. Topics in Applied Physics, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45509-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45509-8_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45508-1

  • Online ISBN: 978-3-662-45509-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics