Skip to main content

Soft Robotics with Variable Stiffness Actuators: Tough Robots for Soft Human Robot Interaction

  • Conference paper
  • First Online:
Soft Robotics

Abstract

Robots that are not only robust, dynamic, and gentle in the human robot interaction, but are also able to perform precise and repeatable movements, need accurate dynamics modeling and a high-performance closed-loop control. As a technological basis we propose robots with intrinsically compliant joints, a stiff link structure, and a soft shell. The flexible joints are driven by Variable Stiffness Actuators (VSA) with a mechanical spring coupling between the motor and the actuator output and the ability to change the mechanical stiffness of the spring coupling. Several model based and model free control approaches have been developed for this technology, e.g. Cartesian stiffness control, optimal control, reactions, reflexes, and cyclic motion control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • [1]Vanderborght B, Albu-Schäffer A, Bicchi A, Burdet E, Caldwell D, Carloni R, Catalano M, Eiberger O, Friedl W, Ganesh G, Garabini M, Grebenstein M, Grioli G, Haddadin S, Höppner H, Jafari A, Laffranchi M, Lefeber D, Petit F, Stramigioli S, Tsagarakis N, Damme MV, Ham RV, Visser L, Wolf S (2013) Variable impedance actuators: A review. Robotics and Autonomous Systems 61(12):1601–1614, DOI http://dx.doi.org/10.1016/j.robot.2013.06.009

  • [2]Grebenstein M, Albu-Schäffer A, Bahls T, Chalon M, Eiberger O, Friedl W, Gruber R, Haddadin S, Hagn U, Haslinger R, Höppner H, Jörg S, Nickl M, Nothhelfer A, Petit F, Reill J, Seitz N, Wimböck T, Wolf S, Wüsthoff T, Hirzinger G (2011) The DLR H and Arm System. In: IEEE International Other on Robotics and Automation (ICRA), pp 3175–3182, DOI 10.1109/ ICRA.2011.5980371

    Google Scholar 

  • [3]Wolf S, Hirzinger G (2008) A new variable stiffness design: Matching requirements of the next robot generation. In: Robotics and Automation, 2008. ICRA 2008. IEEE Interna tional Other on, Pasadena, CA, USA, pp 1741–1746, DOI 10.1109/ROBOT.2008.4543452

    Google Scholar 

  • [4]Wolf S, Eiberger O, Hirzinger G (2011) The DLR FSJ: Energy based design of a variable stiffness joint. In: Robotics and Automation (ICRA), 2011 IEEE International Other on, pp 5082–5089, DOI 10.1109/ICRA.2011.5980303

    Google Scholar 

  • [5]Friedl W, Chalon M, Reinecke J, Grebenstein M (2011) FAS A flexible antagonistic spring element for a high performance over. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Other on, pp 1366–1372, DOI 10.1109/IROS.2011.6094569

    Google Scholar 

  • [6]Petit F, Albu-Schäffer A (2011) State feedback damping control for a multi dof variable stiffness robot arm. In: IEEE Int. Conf. on Robotics and Automation (ICRA), IEEE, pp 5561–5567

    Google Scholar 

  • [7]Petit F, Ott C, Albu-Schäffer A (2014) A model-free approach to vibration suppression for intrinsically elastic robots. In: IEEE Int. Conf. on Robotics and Automation (ICRA), IEEE

    Google Scholar 

  • [8]Cui L, Maas H, Perreault EJ, Sandercock TG (2009) In situ estimation of tendon material properties: Differences between muscles of the feline hindlimb. Journal of Biomechanics 42(6):679–685, DOI http://dx.doi.org/10.1016/j. jbiomech.2009.01.022

    Google Scholar 

  • [9]Friedl W, Höppner H, Petit F, Hirzinger G (2011) Wrist and forearm rotation of the DLR H and Arm System: Mechanical design, shape analysis and experimental validation. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Other on, pp 1836–1842, DOI 10.1109/IROS. 2011.6094616

    Google Scholar 

  • [10]Petit F, Chalon M, Friedl W, Grebenstein M, Albu-Schäffer A, Hirzinger G (2010) Bidirectional antagonistic variable stiffness actuation: Analysis, design amp; implementation. In: Robotics and Automation (ICRA), 2010 IEEE International Other, pp 4189–4196, DOI 10.1109/ROBOT.2010.5509267

    Google Scholar 

  • [11]Petit F, Friedl W, Höppner H, Grebenstein M (2014) Analysis and synthesis of the bidirectional antagonistic variable stiffness mechanism. Mechatronics, IEEE/ASME Transactions on PP(99):1–12, DOI 10.1109/TMECH.2014. 2321428

    Google Scholar 

  • [12]Jörg S, Nickl M, Nothhelfer A, Bahls T, Hirzinger G (2011) The computing and communication architecture of the DLR hand arm system. In: Proceedings IEEE/RSJ International Other on Intelligent Robots and Systems, pp 1055–1062

    Google Scholar 

  • [13]Nickl M, Jörg S, Bahls T, Nothhelfer A, Strasser S (2011) Spacewire, a backbone for humanoid robotic systems. In: Proceedings of the 4th International SpaceWire Other, pp 356–359

    Google Scholar 

  • [14]European Cooperation for Space Standardization (ECSS) (2003) ECSS E-50-12A SpaceWire - Links, nodes routers and networks. http://spacewire.eas.int

    Google Scholar 

  • [15]IC Haus (2007) BiSS C Interface Protocol (C-Mode). http://www.ichaus.com, c1 edn

    Google Scholar 

  • [16]Grebenstein M (2014) Approaching Human Performance: The Functionality-Driven Awiwi Robot H and (Springer Tracts in Advanced Robotics). Springer, Berlin; Heidelberg; New York

    Google Scholar 

  • [17]Grebenstein M, Chalon M, Friedl W, Haddadin S, Wimböck T, Hirzinger G, Siegwart R (2012) The hand of the DLR H and Arm System: Designed for interaction. IJRR 31(13):1531–1555

    Google Scholar 

  • [18]Gray H (1999) Anatomy, descriptive and surgical. Courage Books, Philadelphia [19] Grebenstein M, Chalon M, Hirzinger G, Siegwart R (2010) A method for hand kinematics designers; 7 billion perfect hands. International Other on Advances in Bioscience and Bioengineering

    Google Scholar 

  • [20]Chalon M, Grebenstein M, Wimböck T, Hirzinger G (2010) The thumb: Guidelines for a robotic design. Intelligent Robots and Systems, (2010) IEEE/RSJ International Other on, pp 2153–2858

    Google Scholar 

  • [21]Grebenstein M, Chalon M, Hirzinger G, Siegwart R (2010) Antagonistically driven finger design for the anthropomorphic DLR H and Arm System. Humanoids Robots, IEEE/RAS International Other, pp 609–616

    Google Scholar 

  • [22]Grebenstein M, van der Smagt P (2008) Antagonism for a highly anthropomorphic handarm system. Advanced Robotics 1(22):39–55, DOI 10.1163/156855308X291836

    Article  Google Scholar 

  • [23]Albu-Schäffer A, Wolf S, Eiberger O, Haddadin S, Petit F, Chalon M (2010) Dynamic modelling and control of variable stiffness actuators. In: Robotics and Automation (ICRA), 2010 IEEE International Other on, pp 2155–2162, DOI 10.1109/ROBOT.2010.5509850

    Google Scholar 

  • [24]Jafari A, Tsagarakis N, Caldwell D (2013) A novel intrinsically energy efficient development of a novel actuator with adjustable stiffness (awas). IEEE Transactions on Mechatronics 18(1)

    Google Scholar 

  • [25]Albu-Schäffer A, Fischer M, Schreiber G, Schoeppe F, Hirzinger G (2004) Soft robotics: What cartesian stiffness can we obtain with passively compliant, uncoupled joints? In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp 3295–3301

    Google Scholar 

  • [26]Hogan N (1990) Mechanical impedance of single- and multi-articular systems. In: Winters J, Woo SY (eds) Multiple Muscle Systems, Springer New York, pp 149–164

    Google Scholar 

  • [27]Fantoni I, Lozano R, Spong MW (2000) Energy based control of the pendubot. IEEE Trans on Automatic Control 45(4):725–729

    Article  MATH  MathSciNet  Google Scholar 

  • [28]Petit F, Albu-Schäffer A (2011) Cartesian impedance control for a variable stiffness robot arm. In: Proc. of the IEEE/RSJ International Other on Intelligent Robots and Systems, pp 4180–4186

    Google Scholar 

  • [29]Palli G, Melchiorri C, Luca AD (2008) On the feedback linearization of robots with variable joint stiffness. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp 1753–1759

    Google Scholar 

  • [30]De Luca A Flacco F Bicchi A Schiavi R (2009) Nonlinear decoupled motion-stiffness control and collision detection/reaction for the vsa-ii variable stiffness device. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2009), IEEE, pp 5487–5494

    Google Scholar 

  • [31]Palli G, Melchiorri C (2011) Output-based control of robots with variable stiffness actuation. Journal of Robotics

    Google Scholar 

  • [32]Tonietti G, Schiavi R, Bicchi A (2005) Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp 528–533

    Google Scholar 

  • [33]Albu-Schäffer A, Ott C, Petit F (2012) Energy shaping control for a class of underactuated euler-lagrange systems. In: IFAC Symposium on Robot Control

    Google Scholar 

  • [34]Sardellitti I, Medrano-Cerda G, Tsagarakis NG, Jafari A, Caldwell DG (2012) A position and stiffness control strategy for variable stiffness actuators. In: Proc. IEEE Int. Conf. on Robotics and Automation

    Google Scholar 

  • [35]Pontryagin L (1987) Mathematical Theory of Optimal Processes. Classics of Soviet Mathematics, Taylor & Francis

    Google Scholar 

  • [36]Garabini M, Passaglia A, Belo FAW, Salaris P, Bicchi A (2011) Optimality principles in variable stiffness control: the VSA hammer. 2011 IEEE/RSJ International Other on Intelligent Robots and Systems (IROS2011), San Francisco, USA pp 3770–3775

    Google Scholar 

  • [37]Garabini M, Passaglia A, Belo F, Salaris P, Bicchi A (2012) Optimality principles in stiffness control: The VSA kick. In: Robotics and Automation (ICRA), 2012 IEEE International Other on, pp 3341–3346

    Google Scholar 

  • [38]Haddadin S, Weis M, Albu-Schäffer A, Wolf S (2011) Optimal control for maximizing link velocity of robotic variable stiffness joints. In: Proceedings IFAC 2011, World Congress pp 3175–3182

    Google Scholar 

  • [39]Haddadin S, Krieger K, Mansfeld N, Albu-Schäffer A (2012) On impact decoupling properties of elastic robots and time optimal velocity maximization on joint level. In: In telligent Robots and Systems (IROS), 2012 IEEE/RSJ International Other, pp 5089–5096, DOI 10.1109/IROS.2012.6385913

    Google Scholar 

  • [40]Haddadin S, Özparpucu M, Albu-Schäffer A (2012) Optimal control for maximizing potential energy in a variable stiffness joint. In: Decision and Control (CDC), 2012 IEEE 51st Annual Other, pp 1199–1206

    Google Scholar 

  • [41]Incaini R, Sestini L, Garabini M, Catalano MG, Grioli G, Bicchi A (2013) Optimal control and design guidelines for soft jumping robots: Series elastic actuation and parallel elastic actuation in comparison. In: IEEE International Other on Robotics and Automation (ICRA2013), pp 2477–2484

    Google Scholar 

  • [42]Özparpucu MC, Albu-Schäffer A (2014, Accepted) Optimal control strategies for maximizing the performance of variable stiiffness joints with nonlinear springs. In: Decision and Control (CDC), 2014 IEEE 53rd Annual Other on

    Google Scholar 

  • [43]Özparpucu MC, Haddadin S (2013) Optimal control for maximizing link velocity of visco-elastic joints. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Other on, pp 3035–3042

    Google Scholar 

  • [44]Özparpucu MC, Haddadin S (2014) Optimal control of elastic joints with variable damping. In: Control Other (ECC), 2014 European, pp 2526–2533

    Google Scholar 

  • [45]Özparpucu MC, Haddadin S, Albu-Schaffer A (2014, Accepted) Optimal control of variable stiffness actuators with nonlinear springs. In: Proceedings. IFAC 2014, World Congress

    Google Scholar 

  • [46]Garg D, Patterson MA, Hager WW, Rao AV, Benson DA, Huntington GT (2010) A unified framework for the numerical solution of optimal control problems using pseudospectral methods. Automatica 46(11):1843–1851

    Article  MATH  MathSciNet  Google Scholar 

  • [47]Braun D, Howard M, Vijayakumar S (2011) Exploiting variable stiffness in explosive movement tasks. In: Proceedings of Robotics: Science and Systems (RSS2011), Los Angeles, USA, pp 25–32

    Google Scholar 

  • [48]Haddadin S, Huber F, Albu-Schäffer A (2012) Optimal control for exploiting the natural dynamics of variable stiffness robots. In: Robotics and Automation (ICRA), 2012 IEEE International Other, pp 3347–3354, DOI 10.1109/ICRA.2012.6225190

    Google Scholar 

  • [49]Mettin U, Shiriaev A (2011) Ball-pitching challenge with an underactuated two-link robot arm. Proceedings IFAC 2011, World Congress pp 1–6

    Google Scholar 

  • [50]Weitschat R, Haddadin S, Huber F, Albu-Schäffer A (2013) Dynamic optimality in realtime: A learning framework for near-optimal robot motions. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Other on, pp 5636–5643

    Google Scholar 

  • [51]De Luca A Albu-Schäffer A Haddadin S Hirzinger G (2006) Collision detection and safe reaction with the DLR-III lightweight manipulator arm. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2006), IEEE, pp 1623–1630

    Google Scholar 

  • [52]Mansfeld N, Haddadin S (2014) Reaching desired states time-optimally from equilibrium and vice versa for visco-elastic joint robots with limited elastic deflection. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS2014), IEEE

    Google Scholar 

  • [53]Wolf S, Albu-Schäffer A (2013) Towards a robust variable stiffness actuator. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Other on, IEEE/RSJ, Tokyo, Japan, pp 5410–5417

    Google Scholar 

  • [54]Lakatos D, Garofalo G, Petit F, Ott C, Albu-Schäffer A (2013) Modal limit cycle control for variable stiffness actuated robots. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp 4934–4941

    Google Scholar 

  • [55]Lakatos D, Görner M, Petit F, Dietrich A, Albu-Schäffer A (2013) A modally adaptive control for multi-contact cyclic motions in compliantly actuated robotic systems. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp 5388–5395

    Google Scholar 

  • [56]Lakatos D, Petit F, Albu-Schäffer A (2013) Nonlinear oscillations for cyclic movements in variable impedance actuated robotic arms. In: Proc. IEEE Int. Conf. on Robotics and Automation, pp 508–515

    Google Scholar 

  • [57]Lakatos D, Garofalo G, Dietrich A, Albu-Schäffer A (2014) Jumping control for compliantly actuated multilegged robots. In: Proc. IEEE Int. Conf. on Robotics and Automation

    Google Scholar 

  • [58]Lakatos D, Petit F, Albu-Schäffer A (2014) Nonlinear oscillations for cyclic movements in human and robotic arms. IEEE Transactions on Robotics pp 865–879

    Google Scholar 

  • [59]Lakatos D, Albu-Schäffer A (2014) Switching based limit cycle control for compliantly actuated second-order systems. Accepted for publication at the IFAC World Congress

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wolf, S. et al. (2015). Soft Robotics with Variable Stiffness Actuators: Tough Robots for Soft Human Robot Interaction. In: Verl, A., Albu-Schäffer, A., Brock, O., Raatz, A. (eds) Soft Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44506-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44506-8_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44505-1

  • Online ISBN: 978-3-662-44506-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics