Skip to main content

On the Simplest Quartic Fields and Related Thue Equations

  • Conference paper
  • First Online:
  • 715 Accesses

Abstract

Let \(K\) be a field of char \(K\ne 2\). For \(a\in K\), we give an explicit answer to the field isomorphism problem of the simplest quartic polynomial \(X^4-\,aX^3-\,6X^2+\,aX+\,1\) over \(K\) as the special case of the field intersection problem via multi-resolvent polynomials. From this result, over an infinite field \(K\), we see that the polynomial gives the same splitting field over \(K\) for infinitely many values \(a\) of \(K\). We also see by Siegel’s theorem for curves of genus zero that only finitely many algebraic integers \(a\in \fancyscript{O}_K\) in a number field \(K\) may give the same splitting field. By applying the result over the field \(\mathbb {Q}\) of rational numbers, we establish a correspondence between primitive solutions to the parametric family of quartic Thue equations

$$ X^4-mX^3Y-6X^2Y^2+mXY^3+Y^4=c, $$

where \(m\in \mathbb {Z}\) is a rational integer and \(c\) is a divisor of \(4(m^2+16)\), and isomorphism classes of the simplest quartic fields.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gras, M.N.: Table numérique du nombre de classes et des unités des extensions cycliques réelles de degré 4 de \(\mathbf{Q}\), Publ. Math. Fac. Sci. Besançon, fasc 2, 1977/1978

    Google Scholar 

  2. Lazarus, A.J.: On the class number and unit index of simplest quartic fields. Nagoya Math. J. 121, 1–13 (1991)

    MathSciNet  MATH  Google Scholar 

  3. Lettl, G., Pethö, A.: Complete solution of a family of quartic Thue equations. Abh. Math. Sem. Univ. Hamburg 65, 365–383 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gaál, I.: Diophantine equations and power integral bases. New computational methods. Birkhäuser Boston Inc, Boston (2002)

    Book  MATH  Google Scholar 

  5. Duquesne, S.: Elliptic curves associated with simplest quartic fields. J. Théor. Nombres Bordeaux 19, 81–100 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hashimoto, K., Hoshi, A.: Families of cyclic polynomials obtained from geometric generalization of Gaussian period relations. Math. Comp. 74, 1519–1530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kim, H.K.: Evaluation of zeta functions at \(s=-1\) of the simplest quartic field, In: Proceedings of the 2003 Nagoya Conference Yokoi-Chowla Conjecture and Related Problems, Saga Univ., Saga, 63–73 (2004)

    Google Scholar 

  8. Louboutin, S.R.: Efficient computation of root numbers and class numbers of parametrized families of real abelian number fields. Math. Comp. 76, 455–473 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Rikuna, Y.: On simple families of cyclic polynomials. Proc. Amer. Math. Soc. 130, 2215–2218 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hashimoto, K., Miyake, K.: Inverse Galois problem for dihedral groups, number theory and its applications (Kyoto, 1997), 165–181, Dev. Math., 2, Kluwer Acad. Publ. Dordrecht (1999)

    Google Scholar 

  11. Miyake, K.: Linear fractional transformations and cyclic polynomials, algebraic number theory (Hapcheon/Saga, 1996). Adv. Stud. Contemp. Math. (Pusan) 1, 137–142 (1999)

    MathSciNet  MATH  Google Scholar 

  12. Komatsu, T.: Arithmetic of Rikuna’s generic cyclic polynomial and generalization of Kummer theory. Manuscripta Math. 114, 265–279 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kida, M.: Kummer theory for norm algebraic tori. J. Algebra 293, 427–447 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ogawa, H.: Quadratic reduction of multiplicative group and its applications, (Japanese) Algebraic number theory and related topics (Kyoto, 2002). Sūrikaisekikenkyūsho Kōkyūroku No. 1324, 217–224 (2003)

    Google Scholar 

  15. Chapman, R.J.: Automorphism polynomials in cyclic cubic extensions. J. Number Theory 61, 283–291 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hoshi, A.: On correspondence between solutions of a parametric family of cubic Thue equations and isomorphic simplest cubic fields. J. Number Theory 131, 2135–2150 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hoshi, A., Miyake, K.: A Geometric Framework for the Subfield Problem of Generic Polynomials via Tschirnhausen Transformation, Number Theory and Applications. Hindustan Book Agency, New Delhi, 65–104 (2009)

    Google Scholar 

  18. Morton, P.: Characterizing cyclic cubic extensions by automorphism polynomials. J. Number Theory 49, 183–208 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hoshi, A., Miyake, K.: Tschirnhausen transformation of a cubic generic polynomial and a \(2\)-dimensional involutive cremona transformation. Proc. Japan Acad. Ser. A 83, 21–26 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hoshi, A., Miyake, K.: On the field intersection problem of quartic generic polynomials via formal Tschirnhausen transformation. Comment. Math. Univ. St. Pauli 58, 51–86 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Hoshi, A., Miyake, K.: On the field intersection problem of generic polynomials: a survey. RIMS Kôkyûroku Bessatsu B12, 231–247 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Hoshi, A., Miyake, K.: On the field intersection problem of solvable quintic generic polynomials. Int. J. Number Theory 6, 1047–1081 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lang, S.: Elliptic Curves: Diophantine Analysis, Grundlehren der Mathematischen Wissenschaften, 231. Springer, Berlin (1978)

    Book  Google Scholar 

  24. Lang, S.: Fundamentals of Diophantine geometry. Springer, New York (1983)

    Book  MATH  Google Scholar 

  25. Chen, J., Voutier, P.: Complete solution of the Diophantine equation \(X^2+1=dY^4\) and a related family of quartic Thue equations. J. Number Theory 62, 71–99 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lettl, G., Pethö, A., Voutier, P.: Simple families of Thue inequalities. Trans. Amer. Math. Soc. 351, 1871–1894 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wakabayashi, I.: Simple families of Thue inequalities. Ann. Sci. Math. Québec 31, 211–232 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Adelmann, C.: The Decomposition of Primes in Torsion Point Fields. Lecture Notes in Mathematics. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  29. Cohen, H.: A Course in Computational Algebraic Number Theory, Graduate Texts in Mathematics, 138. Springer, Berlin (1993)

    Book  Google Scholar 

  30. Cohen, H.: Advanced Topics in Computational Number Theory, Graduate Texts in Mathematics, 193. Springer, New York (2000)

    Book  Google Scholar 

  31. Girstmair, K.: On the computation of resolvents and Galois groups. Manuscripta Math. 43, 289–307 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rennert, N., Valibouze, A.: Calcul de résolvantes avec les modules de cauchy. Exp. Math. 8, 351–366 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rennert, N.: A parallel multi-modular algorithm for computing Lagrange resolvens. J. Symb. Comput. 37, 547–556 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  34. The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.10. (2007). (http://www.gap-system.org)

  35. Ahmad, H., Hajja, M., Kang, M.: Negligibility of projective linear automorphisms. J. Algebra 199, 344–366 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  36. Poulakis, D., Voskos, E.: On the practical solution of genus zero Diophantine equations. J. Symb. Comput. 30, 573–582 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sendra, J.R., Winkler, F., Pérez-Díaz, S.: Rational Algebraic Curves. A computer Algebra Approach. Algorithms and Computation in Mathematics, 22. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  38. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Rikkyo University Special Fund for Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akinari Hoshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoshi, A. (2014). On the Simplest Quartic Fields and Related Thue Equations. In: Feng, R., Lee, Ws., Sato, Y. (eds) Computer Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43799-5_7

Download citation

Publish with us

Policies and ethics