Skip to main content

Detection of Bacteria with Bioluminescent Reporter Bacteriophage

  • Chapter
  • First Online:
Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 1

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 144))

Abstract

Bacteriophages are viruses that exclusively infect bacteria. They are ideally suited for the development of highly specific diagnostic assay systems. Bioluminescent reporter bacteriophages are designed and constructed by integration of a luciferase gene in the virus genome. Relying on the host specificity of the phage, the system enables rapid, sensitive, and specific detection of bacterial pathogens. A bioluminescent reporter phage assay is superior to any other molecular detection method, because gene expression and light emission are dependent on an active metabolism of the bacterial cell, and only viable cells will yield a signal. In this chapter we introduce the concept of creating reporter phages, discuss their advantages and disadvantages, and illustrate the advances made in developing such systems for different Gram-negative and Gram-positive pathogens. The application of bioluminescent reporter phages for the detection of foodborne pathogens is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

d:

Day(s)

g:

Gram(s)

h:

Hour(s)

L:

Liter(s)

min:

Minute(s)

ml:

Milliliter(s)

mol:

Mole(s)

s:

Second(s)

References

  1. Hendrix RW (2003) Bacteriophage genomics. Curr Opin Microbiol 6:506–511

    Article  CAS  Google Scholar 

  2. Hendrix RW, Hatfull GF, Smith MC (2003) Bacteriophages with tails: chasing their origins and evolution. Res Microbiol 154:253–257

    Article  CAS  Google Scholar 

  3. Sulakvelidze A, Alavidze Z, Morris JG Jr (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45:649–659

    Article  CAS  Google Scholar 

  4. Summers WC (2001) Bacteriophage therapy. Annu Rev Microbiol 55:437–451

    Article  CAS  Google Scholar 

  5. Greer GG (2005) Bacteriophage control of foodborne bacteria. J Food Prot 68:1102–1111

    Google Scholar 

  6. Hooton SP, Atterbury RJ, Connerton IF (2011) Application of a bacteriophage cocktail to reduce Salmonella Typhimurium U288 contamination on pig skin. Int J Food Microbiol 151(2):157–163

    Google Scholar 

  7. Carvalho CM, Gannon BW, Halfhide DE, Santos SB, Hayes CM, Roe JM, Azeredo J (2010) The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiol 10:232

    Article  Google Scholar 

  8. Connerton PL, Timms AR, Connerton IF (2011) Campylobacter bacteriophages and bacteriophage therapy. J Appl Microbiol 111:255–265

    Article  CAS  Google Scholar 

  9. Guenther S, Herzig O, Fieseler L, Klumpp J, Loessner MJ (2012) Biocontrol of Salmonella Typhimurium in RTE foods with the virulent bacteriophage FO1-E2. Int J Food Microbiol 154:66–72

    Article  Google Scholar 

  10. Loessner MJ (2005) Bacteriophage endolysins—current state of research and applications. Curr Opin Microbiol 8:480–487

    Article  CAS  Google Scholar 

  11. Fischetti VA (2010) Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol 300:357–362

    Article  CAS  Google Scholar 

  12. Sarkis GJ, Jacobs WR Jr, Hatfull GF (1995) L5 luciferase reporter mycobacteriophages: a sensitive tool for the detection and assay of live mycobacteria. Mol Microbiol 15:1055–1067

    Article  CAS  Google Scholar 

  13. Ulitzur S, Kuhn J (1987) Introduction of lux genes into bacteria, a new approach for specific determination of bacteria and their antibiotic susceptibility. In: Schlomerich J, Andreesen R, Kapp A, Ernst M (eds) Bioluminescence and Chemiluminescence: New Perspectives. Wiley, New York, pp 463–472

    Google Scholar 

  14. Goodridge L, Griffiths M (2002) Reporter bacteriophage assays as a mean to detect foodborne pathogenic bacteria. Food Res Int 35:863–870

    Article  CAS  Google Scholar 

  15. Hagens S, de Wouters T, Vollenweider P, Loessner MJ (2011) Reporter bacteriophage A511:celB transduces a hyperthermostable glycosidase from Pyrococcus furiosus for rapid and simple detection of viable Listeria cells. Bacteriophage 1:143–151

    Article  Google Scholar 

  16. Funatsu T, Taniyama T, Tajima T, Tadakuma H, Namiki H (2002) Rapid and sensitive detection method of a bacterium by using a GFP reporter phage. Microbiol Immunol 46:365–369

    Article  CAS  Google Scholar 

  17. Oda M, Morita M, Unno H, Tanji Y (2004) Rapid detection of Escherichia coli O157:H7 by using green fluorescent protein-labeled PP01 bacteriophage. Appl Environ Microbiol 70:527–534

    Article  CAS  Google Scholar 

  18. Wolber PK, Green RL (1990) Detection of bacteria by transduction of ice nucleation genes. Trends Biotechnol 8:276–279

    Article  CAS  Google Scholar 

  19. Minikh O, Tolba M, Brovko LY, Griffiths MW (2010) Bacteriophage-based biosorbents coupled with bioluminescent ATP assay for rapid concentration and detection of Escherichia coli. J Microbiol Methods 82:177–183

    Article  CAS  Google Scholar 

  20. Hazbon MH, Guarin N, Ferro BE, Rodriguez AL, Labrada LA, Tovar R, Riska PF, Jacobs WR Jr (2003) Photographic and luminometric detection of luciferase reporter phages for drug susceptibility testing of clinical Mycobacterium tuberculosis isolates. J Clin Microbiol 41:4865–4869

    Article  CAS  Google Scholar 

  21. Riska PF, Jacobs WR Jr (1998) The use of luciferase-reporter phage for antibiotic-susceptibility testing of mycobacteria. Methods Mol Biol 101:431–455

    CAS  Google Scholar 

  22. Boylan MO, Pelletier J, Dhepagnon S, Trudel S, Sonenberg N, Meighen EA (1989) Construction of a fused LuxAB gene by site-directed mutagenesis. J Biolumin Chemilumin 4:310–316

    Article  CAS  Google Scholar 

  23. Escher A, O’Kane DJ, Lee J, Szalay AA (1989) Bacterial luciferase alpha beta fusion protein is fully active as a monomer and highly sensitive in vivo to elevated temperature. Proc Natl Acad Sci USA 86:6528–6532

    Article  CAS  Google Scholar 

  24. Olsson O, Escher A, Sandberg G, Schell J, Koncz C, Szalay AA (1989) Engineering of monomeric bacterial luciferases by fusion of luxA and luxB genes in Vibrio harveyi. Gene 81:335–347

    Article  CAS  Google Scholar 

  25. Kuhn J, Suissa M, Wyse J, Cohen I, Weiser I, Reznick S, Lubinsky-Mink S, Stewart G, Ulitzur S (2002) Detection of bacteria using foreign DNA: the development of a bacteriophage reagent for Salmonella. Int J Food Microbiol 74:229–238

    Article  CAS  Google Scholar 

  26. Ripp S, Jegier P, Johnson CM, Brigati JR, Sayler GS (2008) Bacteriophage-amplified bioluminescent sensing of Escherichia coli O157:H7. Anal Bioanal Chem 391:507–514

    Article  CAS  Google Scholar 

  27. Ripp S, Jegier P, Birmele M, Johnson CM, Daumer KA, Garland JL, Sayler GS (2006) Linking bacteriophage infection to quorum sensing signalling and bioluminescent bioreporter monitoring for direct detection of bacterial agents. J Appl Microbiol 100:488–499

    Article  CAS  Google Scholar 

  28. Schofield DA, Bull CT, Rubio I, Wechter WP, Westwater C, Molineux IJ (2012) Development of an engineered bioluminescent reporter phage for detection of bacterial blight of crucifers. Appl Environ Microbiol 78:3592–3598

    Article  CAS  Google Scholar 

  29. Capparelli R, Nocerino N, Lanzetta R, Silipo A, Amoresano A, Giangrande C, Becker K, Blaiotta G, Evidente A, Cimmino A, Iannaccone M, Parlato M, Medaglia C, Roperto S, Roperto F, Ramunno L, Iannelli D (2010) Bacteriophage-resistant Staphylococcus aureus mutant confers broad immunity against staphylococcal infection in mice. PLoS ONE 5:e11720

    Article  Google Scholar 

  30. Ulitzur S, Kuhn J (2000) Construction of lux bacteriophages and the determination of specific bacteria and their antibiotic sensitivities. Methods Enzymol 305:543–557

    Article  CAS  Google Scholar 

  31. Dorscht J, Klumpp J, Bielmann R, Schmelcher M, Born Y, Zimmer M, Calendar R, Loessner MJ (2009) Comparative genome analysis of Listeria bacteriophages reveals extensive mosaicism, programmed translational frameshifting, and a novel prophage insertion site. J Bacteriol 191:7206–7215

    Article  CAS  Google Scholar 

  32. Kilcher S, Loessner MJ, Klumpp J (2010) Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. J Bacteriol 192:5441–5453

    Article  CAS  Google Scholar 

  33. Schmuki MM, Erne D, Loessner MJ, Klumpp J (2012) Bacteriophage P70: Unique morphology and unrelatedness to other Listeria bacteriophages. J Virol 86:13099–13102

    Article  CAS  Google Scholar 

  34. Klumpp J, Fouts DE, Sozhamannan S (2012) Next generation sequencing technologies and the changing landscape of phage genomics. Bacteriophage 2:190–199

    Article  Google Scholar 

  35. Klumpp J, Fouts DE, Sozhamannan S (2013) Bacteriophage functional genomics and its role in bacterial pathogen detection. Brief Funct Genomic 12(4): 354–365

    Google Scholar 

  36. Casjens S, Gilcrease EB (2009) Determining dna packaging stragety by analysis of the termini of the chromosomes in tailed-bacteriophage virions. In: Clokie MRJ, Kropinski A (eds) Bacteriophages—Methods and protocols. vol 2: molecular and applied aspects. Humana Press, New York, pp 91–111

    Google Scholar 

  37. Klumpp J, Dorscht J, Lurz R, Bielmann R, Wieland M, Zimmer M, Calendar R, Loessner MJ (2008) The terminally redundant, nonpermuted genome of Listeria bacteriophage A511: a Model for the SPO1-like myoviruses of gram-positive bacteria. J Bacteriol 190:5753–5765

    Article  CAS  Google Scholar 

  38. Loessner MJ, Rees CE, Stewart GS, Scherer S (1996) Construction of luciferase reporter bacteriophage A511:luxAB for rapid and sensitive detection of viable Listeria cells. Appl Environ Microbiol 62:1133–1140

    CAS  Google Scholar 

  39. Loessner MJ, Rudolf M, Scherer S (1997) Evaluation of luciferase reporter bacteriophage A511:luxAB for detection of Listeria monocytogenes in contaminated foods. Appl Environ Microbiol 63:2961–2965

    CAS  Google Scholar 

  40. Hagens S, Loessner MJ (2010) Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr Pharma Biotechnol 11:58–68

    Article  CAS  Google Scholar 

  41. Anany H, Chen W, Pelton R, Griffiths MW (2011) Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes. Appl Environ Microbiol 77:6379–6387

    Article  CAS  Google Scholar 

  42. Naidoo R, Singh A, Arya SK, Beadle B, Glass N, Tanha J, Szymanski CM, Evoy S (2012) Surface-immobilization of chromatographically purified bacteriophages for the optimized capture of bacteria. Bacteriophage 2:15–24

    Article  Google Scholar 

  43. Arya SK, Singh A, Naidoo R, Wu P, McDermott MT, Evoy S (2011) Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance. The Analyst 136:486–492

    Article  CAS  Google Scholar 

  44. Castilho BA, Olfson P, Casadaban MJ (1984) Plasmid insertion mutagenesis and lac gene fusion with mini-mu bacteriophage transposons. J Bacteriol 158:488–495

    CAS  Google Scholar 

  45. Ulitzur S, Kuhn J (1989) Detection and/or identification of microorganisms i a test sample using bioluminescence or other exogenous genetically introduced marker, Patent C12N15/52, 06/739,957 USPTO

    Google Scholar 

  46. Kuhn J, Suissa M, Chiswell D, Azriel A, Berman B, Shahar D, Reznick S, Sharf R, Wyse J, Bar-On T, Cohen I, Giles R, Weiser I, Lubinsky-Mink S, Ulitzur S (2002) A bacteriophage reagent for Salmonella: molecular studies on Felix 01. Int J Food Microbiol 74:217–227

    Article  CAS  Google Scholar 

  47. Chen J, Griffiths M (1996) Salmonella detection in egg using Lux + bacteriophages. J Food Prot 59:908–914

    CAS  Google Scholar 

  48. Stewart G, Smith T, Denyer S (1989) Genetic engineering for bioluminescent bacteria. Food Sci Technol Today 3: 19-22

    Google Scholar 

  49. Turpin P, Maycroft KA, Bedford J, Rowlands CL (1993) A rapid luminescent-phage based MPN method for the enumeration of Salmonella typhimurium in environmental samples. Lett Appl Microbiol 16: 24-27

    Google Scholar 

  50. Thouand G, Vachon P, Liu S, Dayre M, Griffiths MW (2008) Optimization and validation of a simple method using P22:luxAB bacteriophage for rapid detection of Salmonella enterica serotypes A, B, and D in poultry samples. J Food Prot 71:380–385

    CAS  Google Scholar 

  51. Kodikara CP, Crew HH, Stewart GS (1991) Near on-line detection of enteric bacteria using lux recombinant bacteriophage. FEMS Microbiol Lett 83:261–266

    Article  Google Scholar 

  52. Waddell TE, Poppe C (2000) Construction of mini-Tn10luxABcam/Ptac-ATS and its use for developing a bacteriophage that transduces bioluminescence to Escherichia coli O157:H7. FEMS Microbiol Lett 182:285–289

    Article  CAS  Google Scholar 

  53. Vazquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Dominguez-Bernal G, Goebel W, Gonzalez-Zorn B, Wehland J, Kreft J (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640

    Article  CAS  Google Scholar 

  54. Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511

    CAS  Google Scholar 

  55. McLauchlin J, Mitchell RT, Smerdon WJ, Jewell K (2004) Listeria monocytogenes and listeriosis: a review of hazard characterisation for use in microbiological risk assessment of foods. Int J Food Microbiol 92:15–33

    Article  CAS  Google Scholar 

  56. Loessner MJ, Busse M (1990) Bacteriophage typing of Listeria species. Appl Environ Microbiol 56:1912–1918

    CAS  Google Scholar 

  57. Klumpp J, Lavigne R, Loessner MJ, Ackermann HW (2010) The SPO1-related bacteriophages. Arch Virol 155:1547–1561

    Article  CAS  Google Scholar 

  58. Hagens S, Loessner MJ (2007) Luciferase Reporter Bacteriophages. In: Marks RS, Cullen DC, Karube I, Lowe CR, Weetall HH (eds) Handbook of Biosensors and Biochips. Wiley, Hoboken

    Google Scholar 

  59. Pearson RE, Jurgensen S, Sarkis GJ, Hatfull GF, Jacobs WR Jr (1996) Construction of D29 shuttle phasmids and luciferase reporter phages for detection of mycobacteria. Gene 183:129–136

    Article  CAS  Google Scholar 

  60. Jacobs WR Jr, Barletta RG, Udani R, Chan J, Kalkut G, Sosne G, Kieser T, Sarkis GJ, Hatfull GF, Bloom BR (1993) Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260:819–822

    Article  CAS  Google Scholar 

  61. Piuri M, Jacobs WR Jr, Hatfull GF (2009) Fluoromycobacteriophages for rapid, specific, and sensitive antibiotic susceptibility testing of Mycobacterium tuberculosis. PLoS ONE 4:e4870

    Article  Google Scholar 

  62. Banaiee N, Bobadilla-Del-Valle M, Bardarov S Jr, Riska PF, Small PM, Ponce-De-Leon A, Jacobs WR Jr, Hatfull GF, Sifuentes-Osornio J (2001) Luciferase reporter mycobacteriophages for detection, identification, and antibiotic susceptibility testing of Mycobacterium tuberculosis in Mexico. J Clin Microbiol 39:3883–3888

    Article  CAS  Google Scholar 

  63. Banaiee N, Bobadilla-del-Valle M, Riska PF, Bardarov S Jr, Small PM, Ponce-de-Leon A, Jacobs WR Jr, Hatfull GF, Sifuentes-Osornio J (2003) Rapid identification and susceptibility testing of Mycobacterium tuberculosis from MGIT cultures with luciferase reporter mycobacteriophages. J Med Microbiol 52:557–561

    Article  CAS  Google Scholar 

  64. Rondon L, Piuri M, Jacobs WR Jr, de Waard J, Hatfull GF, Takiff HE (2011) Evaluation of fluoromycobacteriophages for detecting drug resistance in Mycobacterium tuberculosis. J Clin Microbiol 49:1838–1842

    Article  Google Scholar 

  65. Schofield DA, Molineux IJ, Westwater C (2011) ‘Bioluminescent’ reporter phage for the detection of category A bacterial pathogens. J Vis Exp 53:e2740

    Google Scholar 

  66. Schofield DA, Westwater C (2009) Phage-mediated bioluminescent detection of Bacillus anthracis. J Appl Microbiol 107:1468–1478

    Article  CAS  Google Scholar 

  67. Schofield DA, Molineux IJ, Westwater C (2009) Diagnostic bioluminescent phage for detection of Yersinia pestis. J Clin Microbiol 47:3887–3894

    Article  CAS  Google Scholar 

  68. Schofield DA, Molineux IJ, Westwater C (2012) Rapid identification and antibiotic susceptibility testing of Yersinia pestis using bioluminescent reporter phage. J Microbiol Methods 90:80–82

    Article  CAS  Google Scholar 

  69. Schofield D, Bull CT, Rubio I, Wechter WP, Westwater C, Molineux IJ (2013) “Light-tagged” bacteriophage as a diagnostic tool for the detection of phytopathogens. Bioengineered 4:50–54

    Article  Google Scholar 

  70. Carriere C, Riska PF, Zimhony O, Kriakov J, Bardarov S, Burns J, Chan J, Jacobs WR Jr (1997) Conditionally replicating luciferase reporter phages: improved sensitivity for rapid detection and assessment of drug susceptibility of Mycobacterium tuberculosis. J Clin Microbiol 35:3232–3239

    CAS  Google Scholar 

  71. Schmelcher M, Shabarova T, Eugster MR, Eichenseher F, Tchang VS, Banz M, Loessner MJ (2010) Rapid multiplex detection and differentiation of Listeria cells by use of fluorescent phage endolysin cell wall binding domains. Appl Environ Microbiol 76:5745–5756

    Article  CAS  Google Scholar 

  72. Kretzer JW, Lehmann R, Schmelcher M, Banz M, Kim KP, Korn C, Loessner MJ (2007) Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells. Appl Environ Microbiol 73:1992–2000

    Article  CAS  Google Scholar 

  73. Favrin SJ, Jassim SA, Griffiths MW (2003) Application of a novel immunomagnetic separation-bacteriophage assay for the detection of Salmonella enteritidis and Escherichia coli O157:H7 in food. Int J Food Microbiol 85:63–71

    Article  Google Scholar 

  74. Marti R, Zurfluh K, Hagens S, Pianezzi J, Klumpp J, Loessner MJ (2013) Long tail fibers of the novel broad host range T-even bacteriophage S16 specifically recognize Salmonella OmpC. Mol Microbiol 87:818–834

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Loessner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klumpp, J., Loessner, M.J. (2014). Detection of Bacteria with Bioluminescent Reporter Bacteriophage. In: Thouand, G., Marks, R. (eds) Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 1. Advances in Biochemical Engineering/Biotechnology, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43385-0_5

Download citation

Publish with us

Policies and ethics