Skip to main content

Molecular Determinants Controlling Functional Properties of AMPARs and NMDARs in the Mammalian CNS

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 141))

Abstract

L-a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) and N-methyl-D-aspartate receptors (NMDARs) are the two major types of postsynaptic glutamate receptors (GluRs) that mediate excitatory synaptic transmission in the mammalian central nervous system (CNS). Both AMPARs and NMDARs are multimeric proteins, probably tetramers, formed by a variety of molecularly distinct subunits. AMPARs can be assembled from four types of subunits, termed GIuR-A, -B, -C, and -D (or, in an alternative nomenclature, G1uR1, G1uR2, GluR3, and G1uR4). Additional molecular diversity of AMPARs is generated by alternative splicing of the flip-flop module and RNA editing at the Q/R and R/G site. NMDARs are heteromers primarily assembled from NR1 subunits and NR2A, B, C, or D subunits. Various splice variants have been identified for the NR1 subunit, and a new NR3 subunit has been discovered recently. Considering all combinatorial possibilities, the molecular diversity of glutamate-receptor channels is considerable (Hollmann, this volume).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

AMPARs:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors

Ba2+ :

Barium

C-terminal:

Carboxy-terminal

Ca1/3:

Ca1/3 fields of the hippocampus

Ca2+ :

Calcium

CNS:

Central nervous system

EPSC:

Excitatory postsynaptic current

GABAR:

γAmino-butyric-acid receptor

GluR:

Glutamate receptors

H:

Histidine

HEK cells:

Human embryonic kidney cells

I-V curve:

Current-voltage relation

IC50 :

Half-maximal inhibitory concentration

K d :

Dissociation constant

LTD:

Long-term depression

LTP:

Long-term potentiation

M2:

Membrane segment 2

Mg2+ :

Magnesium

mRNA:

Messenger ribonucleic acid

N-terminal:

Amino-terminal

N:

Asparagine

NMDARs:

N-methyl-D-aspartate receptors

Q:

Glutamine

R:

Arginine

RT-PCR:

Reverse transcriptase-polymerise chain reaction

References

  • Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N (1994) Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol 347: 150–160

    Article  PubMed  CAS  Google Scholar 

  • Angulo MC, Lambolez B, Audinat E, Hestrin S, Rossier J (1997) Subunit composition, kinetic, and permeation properties of AMPA receptors in single neocortical non-pyramidal cells. J Neurosci 17: 6685–6696

    PubMed  CAS  Google Scholar 

  • Anson LC, Chen PE, Wyllie DJA, Colquhoun D, Schoepfer R (1998) Identification of amino acid residues of the NR2A subunit that control glutamate potency in recombinant NR1/NR2A NMDA receptors. J Neurosci 18: 581–589

    PubMed  CAS  Google Scholar 

  • Audinat E, Lambolez B, Rossier J, Crépel F (1994) Activity-dependent regulation of N-methyl-D-aspartate receptor subunit expression in rat cerebellar granule cells. Eur J Neurosci 6: 1792–1800

    Article  PubMed  CAS  Google Scholar 

  • Baude A, Nusser Z, Molnar E, Mcllhinney RAJ, Somogyi P (1995) High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus. Neurosci 69: 1031–1055

    Article  CAS  Google Scholar 

  • Benveniste M, Clements J, Vyklicky L Jr, Mayer ML (1990) A kinetic analysis of the modulation of N-methyl-D-aspartic acid receptors by glycine in mouse cultured hippocampal neurones. J Physiol (Lond) 428: 333–357

    CAS  Google Scholar 

  • Bessho Y, Nawa H, Nakanishi S (1994) Selective up-regulation of an NMDA receptor subunit mRNA in cultured cerebellar granule cells by K+-induced depolarization and NMDA treatment. Neuron 12: 87–95

    Article  PubMed  CAS  Google Scholar 

  • Blaschke M, Keller BU, Rivosecchi R, Hollmann M, Heinemann S, Konnerth A (1993) A single amino acid determines the subunit-specific spider toxin block of a-amino3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor channels. Proc Natl Acad Sci USA 90: 6528–6532

    Article  PubMed  CAS  Google Scholar 

  • Bochet P, Audinat E, Lambolez B, Crépel F, Rossier J, Iino M, Tsuzuki K, Ozawa S (1994) Subunit composition at the single-cell level explains functional properties of a glutamate-gated channel. Neuron 12: 383–388

    Article  PubMed  CAS  Google Scholar 

  • Burnashev N, Monyer H, Seeburg PH, Sakmann B (1992a) Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. Neuron 8: 189–198

    Article  PubMed  CAS  Google Scholar 

  • Burnashev N, Khodorova A, Jonas P, Helm PJ, Wisden W, Monyer H, Seeburg PH, Sakmann B (1992b) Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256: 1566–1570

    Article  PubMed  CAS  Google Scholar 

  • Burnashev N, Schoepfer R, Monyer H, Ruppersberg JP, Günther W, Seeburg PH, Sakmann B (1992c) Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science 257: 1415–1419

    Article  PubMed  CAS  Google Scholar 

  • Burnashev N (1993) Recombinant ionotropic glutamate receptors: functional distinctions imparted by different subunits. Cell Physiol Biochem 3: 318–331

    Article  CAS  Google Scholar 

  • Burnashev N, Zhou Z, Neher E, Sakmann B (1995) Fractional calcium currents through recombinant G1uR channels of the NMDA, AMPA and kainate receptor subtypes. J Physiol (Lond) 485: 403–418

    Google Scholar 

  • Carmignoto G, Vicini S (1992) Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. Science 258: 1007–1011

    Article  PubMed  CAS  Google Scholar 

  • Catania MV, Bellomo M, Giuffrida R, Giuffrida R, Stella AMG, Albanese V (1998) AMPA receptor subunits are differentially expressed in parvalbumin-and calretinin-positive neurons of the rat. Eur J Neurosci 10: 3479–3490

    Article  PubMed  CAS  Google Scholar 

  • Chenard BL, Bordner J, Butler TW, Chambers LK, Collins MA, De Costa DL, Ducat MF, Dumont ML, Fox CB, Mena EE, et al. (1995) (1S,2S)-1-(4-hydroxyphenyl)-2(4-hydroxy-4-phenylpiperidino)-1-propanol: a potent new neuroprotectant which blocks N-methyl-D-aspartate responses. J Med Chem 38: 3138–3145

    Google Scholar 

  • Christine CW, Choi DW (1990) Effect of zinc on NMDA receptor-mediated channel currents in cortical neurons. J Neurosci 10: 108–116

    PubMed  CAS  Google Scholar 

  • Ciabarra AM, Sullivan JM, Gahn LG, Pecht G, Heinemann S, Sevarino KA (1995) Cloning and characterization of x-1: a developmentally regulated member of a novel class of the ionotropic glutamate receptor family. J Neurosci 15: 64986508

    Google Scholar 

  • Colquhoun D, Jonas P, Sakmann B (1992) Action of brief pulses of glutamate on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. J Physiol (Lond) 458: 261–287

    CAS  Google Scholar 

  • Cull-Candy SG, Brickley SG, Misra C, Feldmeyer D, Momiyama A, Farrant M (1998) NMDA receptor diversity in the cerebellum: identification of subunits contributing to functional receptors. Neuropharmacol 37: 1369–80

    Article  CAS  Google Scholar 

  • Curutchet P, Bochet P, Prado de Carvalho L, Lambolez B, Stinnakre J, Rossier J (1992) In the G1uR1 glutamate receptor subunit a glutamine to histidine point mutation suppresses inward rectification but not calcium permeability. BBRC 182: 1089–1093

    PubMed  CAS  Google Scholar 

  • Dingledine R, Hume RI, Heinemann SF (1992) Structural determinants of barium permeation and rectification in non-NMDA glutamate receptor channels. J Neurosci 12: 4080–4087

    PubMed  CAS  Google Scholar 

  • Dupont JL, Fournier R, Crepel F (1987) Postnatal development of chemosensitivity of rat cerebellar Purkinje cells to excitatory amino acids. An in vitro study. Develop Brain Res 34: 59–68

    Google Scholar 

  • Durand GM, Bennett MV, Zukin RS (1993) Splice variants of the N-methyl-Daspartate receptor NR1 identify domains involved in regulation by polyamines and protein kinase C. Proc Natl Acad Sci USA 90: 6731–6735

    Article  PubMed  CAS  Google Scholar 

  • Durand GM, Gregor P, Zheng X, Bennett MV, Uhl GR, Zukin RS (1992) Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C. Proc Natl Acad Sci USA 89: 9359–9363

    Article  PubMed  CAS  Google Scholar 

  • Durand GM, Zukin RS (1993) Developmental regulation of mRNAs encoding rat brain kainate/AMPA receptors: a northern analysis study. J Neurochem 61: 2239–2246

    Article  PubMed  CAS  Google Scholar 

  • Ehlers MD, Zhang S, Bernhardt JP, Huganir RL (1996) Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell 84: 745–755

    Article  PubMed  CAS  Google Scholar 

  • Farrant M, Feldmeyer D, Takahashi T, Cull-Candy SG (1994) NMDA-receptor channel diversity in the developing cerebellum. Nature 368: 335–339

    Article  PubMed  CAS  Google Scholar 

  • Fleck MW, Bähring R, Patneau DK, Mayer ML (1996) AMPA receptor heterogeneity in rat hippocampal neurons revealed by differential sensitivity to cyclothiazide. J Neurophysiol 75: 2322–2333

    PubMed  CAS  Google Scholar 

  • Fleidervish IA, Binshtok AM, Gutnick MJ (1998) Functionally distinct NMDA receptors mediate horizontal connectivity within layer 4 of mouse barrel cortex. Neuron 21: 1055–1065

    Article  PubMed  CAS  Google Scholar 

  • Flint AC, Maisch US, Weishaupt JH, Kriegstein AR, Monyer H (1997) NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J Neurosci 17: 2469–2476

    PubMed  CAS  Google Scholar 

  • Freund TF, Buzsâki G (1996) Interneurons of the hippocampus. Hippocamp 6:347–470 Fritschy JM, Weinmann O, Wenzel A, Benke D (1998) Synapse-specific localization of

    Google Scholar 

  • NMDA and GABA(A) receptor subunits revealed by antigen-retrieval immunohistochemistry. J Comp Neurol 390:194–210

    Google Scholar 

  • Geiger JRP, Lübke J, Roth A, Frotscher M, Jonas P (1997) Submillisecond AMPA receptor-mediated signaling at a principal neuron—interneuron synapse. Neuron 18: 1009–1023

    Article  PubMed  CAS  Google Scholar 

  • Geiger JRP, Melcher T, Koh D-S, Sakmann B, Seeburg PH, Jonas P, Monyer H (1995) Relative abundance of subunit mRNAs determines gating and Ca’ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15: 193–204

    Article  PubMed  CAS  Google Scholar 

  • Gibb AJ, Colquhoun D (1992) Activation of N-methyl-D-aspartate receptors by L-glutamate in cells dissociated from adult rat hippocampus. J Physiol (Lond) 456: 143–179

    CAS  Google Scholar 

  • Gilbertson TA, Scobey R, Wilson M (1991) Permeation of calcium ions through nonNMDA glutamate channels in retinal bipolar cells. Science 251: 1613–1615

    Article  PubMed  CAS  Google Scholar 

  • Goldstein PA, Lee CJ, MacDermott AB (1995) Variable distributions of Ca’- permeable and Ca“-impermeable AMPA receptors on embryonic rat dorsal horn neurons. J Neurophysiol 73: 2522–2534

    PubMed  CAS  Google Scholar 

  • Götz T, Kraushaar U, Geiger J, Lübke J, Berger T, Jonas P (1997) Functional properties of AMPA and NMDA receptors expressed in identified types of basal ganglia neurons. J Neurosci 17: 204–215

    PubMed  Google Scholar 

  • Gu JG, Albuquerque C, Lee CJ, MacDermott AB (1996) Synaptic strengthening through activation of Cat+-permeable AMPA receptors. Nature 381: 793–796

    Article  PubMed  CAS  Google Scholar 

  • Haverkampf K, Lübke J, Jonas P (1997) Single-channel properties of native AMPA receptors depend on the putative subunit composition. Soc for Neurosci Abstr 23: 478. 23

    Google Scholar 

  • Herlitze S, Raditsch M, Ruppersberg JP, Jahn W, Monyer H, Schoepfer R (1993) Argiotoxin detects molecular differences in AMPA receptor channels. Neuron 10: 1131–40

    Article  PubMed  CAS  Google Scholar 

  • Hestrin S (1992a) Activation and desensitization of glutamate-activated channels mediating fast excitatory synaptic currents in the visual cortex. Neuron 9: 991–999

    Article  PubMed  CAS  Google Scholar 

  • Hestrin S (1992b) Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse. Nature 357: 686–689

    Article  PubMed  CAS  Google Scholar 

  • Hestrin S (1993) Different glutamate receptor channels mediate fast excitatory synaptic currents in inhibitory and excitatory cortical neurons. Neuron 11: 10831091

    Google Scholar 

  • Higuchi M, Single FN, Köhler M, Sommer B, Sprengel R, Seeburg PH (1993) RNA editing of AMPA receptor subunit GluR-B: a base-paired intron—exon structure determines position and efficiency. Cell 75: 1361–1370

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann H, Hatt H, Gottmann K (1997) Presynaptic exocytosis regulates NR2A mRNA expression in cultured neocortical neurones. Neurorep 8: 3731–3735

    Article  CAS  Google Scholar 

  • Hollmann M, Boulter J, Maron C, Beasley L, Sullivan J, Pecht G, Heinemann S (1993) Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10: 943–954

    Article  PubMed  CAS  Google Scholar 

  • Hohmann M, Hartley M, Heinemann S (1991) Ca’ permeability of KA-AMPAgated glutamate receptor channels depends on subunit composition. Science 252: 851–853

    Article  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Ann Rev of Neurosci 17: 31–108

    Article  CAS  Google Scholar 

  • Hohmann M, O’Shea-Greenfield A, Rogers SW, Heinemann S (1989) Cloning by functional expression of a member of the glutamate receptor family. Nature 342: 643648

    Google Scholar 

  • Hume RI, Dingledine R, Heinemann SF (1991) Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253: 1028–1031

    Article  PubMed  CAS  Google Scholar 

  • lino M, Koike M, Isa T, Ozawa S (1996) Voltage-dependent blockage of CaZ+permeable AMPA receptors by joro spider toxin in cultured rat hippocampal neurones. J Physiol (Lond) 496: 431–437

    Google Scholar 

  • Iino M, Ozawa S, Tsuzuki K (1990) Permeation of calcium through excitatory amino acid receptor channels in cultured rat hippocampal neurones. J Physiol (Lond) 424: 151–165

    CAS  Google Scholar 

  • Iino M, Ciani S, Tsuzuki K, Ozawa S, Kidokoro Y (1997) Permeation properties of Na+ and Ca’ ions through the mouse E21Ç1 NMDA receptor channel expressed in Xenopus oocytes. J Membrane Biol 155: 143–156

    Article  CAS  Google Scholar 

  • Ikeda K, Nagasawa M, Mori H, Araki K, Sakimura K, Watanabe M, Inoue Y, Mishina M (1992) Cloning and expression of the e4 subunit of the NMDA receptor channel. FEBS Letters 313: 34–38

    Article  PubMed  CAS  Google Scholar 

  • Ilyin VI, Whittemore ER, Guastella J, Weber E, Woodward RM (1996) Subtype-selective inhibition of N-methyl-D-aspartate receptors by haloperidol. Mol Pharmacol 50: 1541–1550

    PubMed  CAS  Google Scholar 

  • Isa T, Itazawa S, Iino M, Tsuzuki K, Ozawa S (1996) Distribution of neurones expressing inwardly rectifying and Cat+-permeable AMPA receptors in rat hippocampal slices. J Physiol (Lond) 491: 719–733

    CAS  Google Scholar 

  • Ishü T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M, Nakanishi S (1993) Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 268: 2836–2843

    Google Scholar 

  • Itazawa SI, Isa T, Ozawa S (1997) Inwardly rectifying and Ca’-permeable AMPA-type glutamate receptor channels in rat neocortical neurons. J Neurophysiol 78: 2592–2605

    PubMed  CAS  Google Scholar 

  • Ito I, Futai K, Katagiri H, Watanabe M, Sakimura K, Mishina M, Sugiyama H (1997) Synapse-selective impairment of NMDA receptor functions in mice lacking NMDA receptor el or c2 subunit. J Physiol (Lond) 500: 401–408

    CAS  Google Scholar 

  • Jia Z, Agopyan N, Miu P, Xiong Z, Henderson J, Gerlai R, Taverna FA, Velumian A, MacDonald J, Carlen P, Abramow-Newerly W, Roder J (1996) Enhanced LTP in mice deficient in the AMPA receptor G1uR2. Neuron 17: 945–956

    Article  PubMed  CAS  Google Scholar 

  • Jonas P, Burnashev N (1995) Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels. Neuron 15: 987–990

    Article  PubMed  CAS  Google Scholar 

  • Jonas P, Racca C, Sakmann B, Seeburg PH, Monyer H (1994) Differences in Ca“ permeability of AMPA-type glutamate receptor channels in neocortical neurons caused by differential GluR-B subunit expression. Neuron 12: 1281–1289

    Article  PubMed  CAS  Google Scholar 

  • Jonas P, Sakmann B (1992) Glutamate receptor channels in isolated patches from CAl and CA3 pyramidal cells of rat hippocampal slices. J Physiol (Lond) 455: 143–171

    CAS  Google Scholar 

  • Keinänen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH (1990) A family of AMPA-selective glutamate receptors. Science 249: 556–560

    Article  PubMed  Google Scholar 

  • Kendrick SJ, Dichter MA, Wilcox KS (1998) Characterization of desensitization in recombinant N-methyl-D-aspartate receptors: comparison with native receptors in cultured hippocampal neurons. Brain Res. Mol Brain Res 57: 10–20

    Google Scholar 

  • Kew JN, Richards JG, Mutel V, Kemp JA (1998) Developmental changes in NMDA receptor glycine affinity and ifenprodil sensitivity reveal three distinct populations of NMDA receptors in individual rat cortical neurons. J Neurosci 18: 19351943

    Google Scholar 

  • Kirson ED, Yaari Y (1996) Synaptic NMDA receptors in developing mouse hippocampal neurones: functional properties and sensitivity to ifenprodil. J Physiol (Lond) 497: 437–455

    CAS  Google Scholar 

  • Koh D-S, Geiger JRP, Jonas P, Sakmann B (1995a) CaZ+-permeable AMPA and NMDA receptor channels in basket cells of rat hippocampal dentate gyrus. J Physiol (Lond) 485: 383–402

    CAS  Google Scholar 

  • Koh D-S, Burnashev N, Jonas P (1995b) Block of native Caz+-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. J Physiol (Lond) 486: 305–312

    CAS  Google Scholar 

  • Kondo M, Sumino R, Okado H (1997) Combinations of AMPA receptor subunit expression in individual cortical neurons correlate with expression of specific calcium-binding proteins. J Neurosci 17: 1570–1581

    PubMed  CAS  Google Scholar 

  • Krupp JJ, Vissel B, Heinemann SF, Westbrook GL (1996) Calcium-dependent inactivation of recombinant N-methyl-D-aspartate receptors is NR2 subunit specific. Mol Pharmacol 50: 1680–1688

    PubMed  CAS  Google Scholar 

  • Krupp JJ, Vissel B, Heinemann SF, Westbrook GL (1998) N-terminal domains in the NR2 subunit control desensitization of NMDA receptors. Neuron 20: 317–327

    Article  PubMed  CAS  Google Scholar 

  • Kuner T, Schoepfer R (1996) Multiple structural elements determine subunit specificity of Mg’ block in NMDA receptor channels. J Neurosci 16: 3549–3558

    PubMed  CAS  Google Scholar 

  • Kuryatov A, Laube B, Betz H, Kuhse J (1994) Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 12: 1291–1300

    Article  PubMed  CAS  Google Scholar 

  • Kutsuwada T, Kashiwabuchi N, Mori H, Sakimura K, Kushiya E, Araki K, Meguro H, Masaki H, Kumanishi T, Arakawa M, Mishina M (1992) Molecular diversity of the NMDA receptor channel. Nature 358: 36–41

    Article  PubMed  CAS  Google Scholar 

  • Kyrozis A, Goldstein PA, Heath MJS, MacDermott AB (1995) Calcium entry through a subpopulation of AMPA receptors desensitized neighboring NMDA receptors in rat dorsal horn neurons. J Physiol (Lond) 485: 373–381

    CAS  Google Scholar 

  • Lambolez B, Audinat E, Bochet P, Crépel F, Rossier J (1992) AMPA receptor subunits expressed by single Purkinje cells. Neuron 9: 247–258

    Article  PubMed  CAS  Google Scholar 

  • Lambolez B, Ropert N, Perrais D, Rossier J, Hestrin S (1996) Correlation between kinetics and RNA splicing of a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in neocortical neurons. Proc Natl Acad Sci USA 93: 1797–1802

    Article  PubMed  CAS  Google Scholar 

  • Laube B, Hirai H, Sturgess M, Betz H, Kuhse J (1997) Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 18: 493–503

    Article  PubMed  CAS  Google Scholar 

  • Laurie DJ, Seeburg PH (1994) Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J Neurosci 14: 3180–3194

    PubMed  CAS  Google Scholar 

  • Legendre P, Rosenmund C, Westbrook GL (1993) Inactivation of NMDA channels in cultured hippocampal neurons by intracellular calcium. J Neurosci 13: 674–684

    PubMed  CAS  Google Scholar 

  • Leranth C, Szeidemann Z, Hsu M, Buzsdki G (1996) AMPA receptors in rat and primate hippocampus: a possible absence of G1uR2/3 subunits in most interneurons. Neurosci 70: 631–652

    Article  CAS  Google Scholar 

  • Lerma J, Morales M, Ibarz JM, Somohano F (1994) Rectification properties and Ca’ permeability of glutamate receptor channels in hippocampal cells. Eur J Neurosci 6: 1080–1088

    Article  PubMed  CAS  Google Scholar 

  • Lindlbauer R, Mohrmann R, Hatt H, Gottmann K (1998) Regulation of kinetic and pharmacological properties of synaptic NMDA receptors depends on presynaptic exocytosis in rat hippocampal neurons. J Physiol (Lond) 508: 495–502

    Article  CAS  Google Scholar 

  • Lomeli H, Mosbacher J, Melcher T, Höger T, Geiger JRP, Kuner T, Monyer H, Higuchi M, Bach A, Seeburg PH (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266: 1709–1713

    Article  PubMed  CAS  Google Scholar 

  • Lynch DR, Gallagher MJ (1996) Inhibition of N-methyl-D-aspartate receptors by haloperidol: developmental and pharmacological characterization in native and recombinant receptors. J Pharmacol Exp Therapeut 279: 154–161

    CAS  Google Scholar 

  • Mahanty NK, Sah P (1998) Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature 394: 683–687

    Article  PubMed  CAS  Google Scholar 

  • Martin LJ, Blackstone CD, Levey AI, Huganir RL, Price DL (1993) AMPA glutamate receptor subunits are differentially distributed in rat brain. Neurosci 53: 327–358

    Article  CAS  Google Scholar 

  • Mayer ML, Partin KM, Patneau DK, Wong LA, Vyklicki L Jr, Benveniste M, Bowie D (1995) Desensitization at AMPA, kainate, and NMDA receptors. In: Excitatory amino acids and synaptic transmission. H. Wheal and A. Thomson (eds), London, Academic

    Google Scholar 

  • Mayer ML, Vyklicky L Jr, Clements J (1989) Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine. Nature 338: 425–427

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL (1987) Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J Physiol (Lond) 394: 501–527

    CAS  Google Scholar 

  • McBain CJ, Dingledine R (1993) Heterogeneity of synaptic glutamate receptors on CA3 stratum radiatum interneurons of rat hippocampus. J Physiol (Loud) 462: 373–392

    CAS  Google Scholar 

  • McBain CJ, Mayer ML (1994) N-methyl-D-aspartic acid receptor structure and function. Physiol Rev 74: 723–760

    Article  PubMed  CAS  Google Scholar 

  • Medina I, Filippova N, Charton G, Rougeole S, Ben-Ari Y, Khrestchatisky M, Bregestovski P (1995) Calcium-dependent inactivation of heteromeric NMDA receptor-channels expressed in human embryonic kidney cells. J Physiol (Lond) 482: 567–573

    CAS  Google Scholar 

  • Meguro H, Mori H, Araki K, Kushiya E, Kutsuwada T, Yamazaki M, Kumanishi T, Arakawa M, Sakimura K, Mishina M (1992). Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357: 70–74

    Article  PubMed  CAS  Google Scholar 

  • Melcher T, Maas S, Herb A, Sprengel R, Seeburg PH, Higuchi M (1996) A mammalian RNA editing enzyme. Nature 379: 460–464

    Article  PubMed  CAS  Google Scholar 

  • Momiyama A, Feldmeyer D, Cull-Candy SG (1996) Identification of a native low-conductance NMDA channel with reduced sensitivity to Mg’ in rat central neurones. J Physiol (Lond) 494: 479–492

    CAS  Google Scholar 

  • Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12: 529–540

    Article  PubMed  CAS  Google Scholar 

  • Monyer H, Seeburg PH, Wisden W (1991) Glutamate-operated channels: developmentally early and mature forms arise by alternative splicing. Neuron 6: 799810

    Google Scholar 

  • Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256: 1217–1221

    Article  PubMed  CAS  Google Scholar 

  • Mori H, Masaki H, Yamakura T, Mishina M (1992). Identification by mutagenesis of a Mge*-block site of the NMDA receptor channel. Nature 358: 673–675

    Article  PubMed  CAS  Google Scholar 

  • Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354: 31–37

    Article  PubMed  CAS  Google Scholar 

  • Mosbacher J, Schoepfer R, Monyer H, Burnashev N, Seeburg PH, Ruppersberg, JP (1994) A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266: 1059–1062

    Article  PubMed  CAS  Google Scholar 

  • Mosbacher JC (1995) Der Einfluss posttranskriptionaler Modifikationen auf die kinetischen Eigenschaften von AMPA-Rezeptoren. PhD Thesis, Heidelberg

    Google Scholar 

  • Mott DD, Doherty JJ, Zhang S, Washburn MS, Frendley MJ, Lyuboslaysky P, Traynelis SF, Dingledine R (1998) Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition. Nature Neurosci 1: 659–667

    Article  PubMed  CAS  Google Scholar 

  • Müller T, Möller T, Berger T, Schnitzer J, Kettenmann H (1992) Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. Science 256: 1563–1566

    Article  PubMed  Google Scholar 

  • Nakanishi N, Shneider NA, Axel R (1990) A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron 5: 569–581

    Article  PubMed  CAS  Google Scholar 

  • Nase G, Weishaupt J, Stern P, Singer W, Monyer H (1997) Activity-dependent regulation of NMDA receptor expression in the visual cortex. Soc Neurosci Abstr 23: 371. 5

    Google Scholar 

  • Osten P, Srivastava S, Inman GJ, Vilim FS, Khatri L, Lee LM, States BA, Einheber S, Milner TA, Hanson PI, Ziff EB (1998) The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and a-and ß-SNAPs. Neuron 21: 99–110

    Google Scholar 

  • Otis TS, Raman IM, Trussell LO (1995) AMPA receptors with high Ca’ permeability mediate synaptic transmission in the avian auditory pathway. J Physiol (Lond) 482: 309–315

    CAS  Google Scholar 

  • Ozaki M, Sasner M, Yano R, Lu HS, Buonanno A (1997) Neuregulin-ß induces expression of an NMDA-receptor subunit. Nature 390: 691–694

    PubMed  CAS  Google Scholar 

  • Paoletti P, Ascher P, Neyton J (1997) High-affinity zinc inhibition of NMDA NR1NR2A receptors. J Neurosci 17: 5711–5725

    PubMed  CAS  Google Scholar 

  • Partin KM, Fleck MW, Mayer ML (1996) AMPA receptor flip/flop mutants affecting deactivation, desensitization, and modulation by cyclothiazide, aniracetam, and thiocyanate. J Neurosci 16: 6634–6647

    PubMed  CAS  Google Scholar 

  • Partin KM, Patneau DK, Mayer ML (1994) Cyclothiazide differentially modulates desensitization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor splice variants. Mol Pharmacol 46: 129–138

    PubMed  CAS  Google Scholar 

  • Pegg AE (1988) Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy. Cancer Res 48: 759–774

    PubMed  CAS  Google Scholar 

  • Petralia RS, Wang YX, Mayat E, Wenthold RJ (1997) Glutamate receptor subunit 2-selective antibody shows a differential distribution of calcium-impermeable AMPA receptors among populations of neurons. J Comp Neurol 385: 456–476

    Article  PubMed  CAS  Google Scholar 

  • Petralia RS, Wenthold RJ (1992) Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J Comp Neurol 318: 329–354

    Article  PubMed  CAS  Google Scholar 

  • Racca C, Catania MV, Monyer H, Sakmann B (1996) Expression of AMPA-glutamate receptor B subunit in rat hippocampal GABAergic neurons. Eur J Neurosci 8: 1580–1590

    Article  PubMed  CAS  Google Scholar 

  • Rafiki A, Gozlan H, Ben-Ari Y, Khrestchatisky M, Medina I (1997) The calcium-dependent transient inactivation of recombinant NMDA receptor-channel does not involve the high affinity calmodulin binding site of the NR1 subunit. Neurosci Letters 223: 137–139

    Article  CAS  Google Scholar 

  • Rosenmund C, Westbrook GL (1993) Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron 10: 805–814

    Article  PubMed  CAS  Google Scholar 

  • Rozov A, Zilberter Y, Wollmuth LP, Burnashev N (1998) Facilitation of currents through rat Ca“-permeable AMPA receptor channels by activity-dependent relief from polyamine block. J Physiol (Lond) 511: 361–377

    Article  CAS  Google Scholar 

  • Rubio ME, Wenthold RJ (1997) Glutamate receptors are selectively targeted to post-synaptic sites in neurons. Neuron 18: 939–950

    Article  PubMed  CAS  Google Scholar 

  • Sather W, Dieudonné S, MacDonald JF, Ascher P (1992) Activation and desensitization of N-methyl-D-aspartate receptors in nucleated outside-out patches from mouse neurones. J Physiol (Lond) 450: 643–672

    CAS  Google Scholar 

  • Sather W, Johnson JW, Henderson G, Ascher P (1990) Glycine-insensitive desensitization of NMDA responses in cultured mouse embryonic neurons. Neuron 4: 725–731

    Article  PubMed  CAS  Google Scholar 

  • Schneggenburger R, Zhou Z, Konnerth A, Neher E (1993) Fractional contribution of calcium to the cation current through glutamate receptor channels. Neuron 11: 133–143

    Article  PubMed  CAS  Google Scholar 

  • Seeburg PH, Higuchi M, Sprengel R (1998) RNA editing of brain glutamate receptor channels: mechanism and physiology Brain Res. Brain Res Rev 26: 217–229

    Article  CAS  Google Scholar 

  • Sekiguchi M, Fleck MW, Mayer ML, Takeo J, Chiba Y, Yamashita S, Wada K (1997) A novel allosteric potentiator of AMPA receptors: 4–2-(phenylsulfonylamino)ethylthio-2,6-difluoro-phenoxyacetamide. J Neurosci 17: 5760–5771

    PubMed  CAS  Google Scholar 

  • Sharma G, Stevens CF (1996). Interactions between two divalent ion binding sites in N-methyl-D-aspartate receptor channels. Proc Natl Acad Sci USA 93: 14170–14175

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368: 144–147

    Article  PubMed  CAS  Google Scholar 

  • Silver RA, Colquhoun D, Cull-Candy SG, Edmonds B (1996) Deactivation and desensitization of non-NMDA receptors in patches and the time course of EPSCs in rat cerebellar granule cells. J Physiol (Lond) 493: 167–173

    CAS  Google Scholar 

  • Soloviev MM, Barnard EA (1997) Xenopus oocytes express a unitary glutamate receptor endogenously. J Mol Biol 273: 14–18

    Article  PubMed  CAS  Google Scholar 

  • Sommer B, Keinänen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Köhler M, Takagi T, Sakmann B, Seeburg PH (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249: 1580–1585

    Article  PubMed  CAS  Google Scholar 

  • Sommer B, Köhler M, Sprengel R, Seeburg PH (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67: 11–19

    Article  PubMed  CAS  Google Scholar 

  • Spruston N, Jonas P, Sakmann B (1995) Dendritic glutamate receptor channels in rat hippocampal CA3 and CAl pyramidal neurons. J Physiol (Lond) 482: 325–352

    CAS  Google Scholar 

  • Standaert DG, Landwehrmeyer GB, Kerner JA, Penney JB Jr, Young AB (1996) Expression of NMDAR2D glutamate receptor subunit mRNA in neurochemically identified interneurons in the rat neostriatum, neocortex and hippocampus. Brain Res. Mol Brain Res. 42: 89–102

    Google Scholar 

  • Stern P, Behe P, Schoepfer R, Colquhoun D (1992) Single-channel conductances of NMDA receptors expressed from cloned cDNAs: comparison with native receptors. Proc Roy Soc London B: Biol Sci 250: 271–277

    Google Scholar 

  • Stern-Bach Y, Bettler B, Hartley M, Sheppard PO, O’Hara PJ, Heinemann SF (1994) Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13: 1345–1357

    Article  PubMed  CAS  Google Scholar 

  • Stern-Bach Y, Russo S, Neuman M, Rosenmund C (1998) A point mutation in the glutamate binding site blocks desensitization of AMPA receptors. Neuron 21: 907918

    Google Scholar 

  • Sucher NJ, Akbarian S, Chi CL, Leclerc CL, Awobuluyi M, Deitcher DL, Wu MK, Yuan JP, Jones EG, Lipton SA (1995) Developmental and regional expression pattern of a novel NMDA receptor-like subunit ( NMDAR-L) in the rodent brain. J Neurosci 15: 6509–6520

    Google Scholar 

  • Swanson GT, Feldmeyer D, Kaneda M, Cull-Candy SG (1996) Effect of RNA editing and subunit co-assembly single-channel properties of recombinant kainate receptors. J Physiol (Lond) 492: 129–142

    CAS  Google Scholar 

  • Swanson GT, Kamboj SK, Cull-Candy SG (1997) Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J Neurosci 17: 58–69

    PubMed  CAS  Google Scholar 

  • Takahashi T, Feldmeyer D, Suzuki N, Onodera K, Cull-Candy SG, Sakimura K, Mishina M (1996) Functional correlation of NMDA receptor epsilon subunits expression with the properties of single-channel and synaptic currents in the developing cerebellum. J Neurosci 16: 4376–4382

    PubMed  CAS  Google Scholar 

  • Taschenberger H, Grantyn R (1998) Interaction of calcium-permeable non-N-methylD-aspartate receptor channels with voltage-activated potassium and calcium currents in rat retinal ganglion cells in vitro. Neurosci 84: 877–896

    Article  CAS  Google Scholar 

  • Tong G, Jahr CE (1994) Regulation of glycine-insensitive desensitization of the NMDA receptor in outside-out patches. J Neurophysiol 72: 754–761

    PubMed  CAS  Google Scholar 

  • Toth K, McBain CJ (1998) Afferent-specific innervation of two distinct AMPA recep- tor subtypes on single hippocampal interneurons. Nature Neurosci 1: 572–578

    Article  PubMed  CAS  Google Scholar 

  • Traub RD, Miles R (1995) Pyramidal cell-to-inhibitory cell spike transduction explicable by active dendritic conductances in inhibitory cell. J Comput Neurosci 2: 291298

    Google Scholar 

  • Traynelis SF, Burgess MF, Zheng F, Lyuboslaysky P, Powers JL (1998) Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J Neurosci 18: 6163–6175

    PubMed  CAS  Google Scholar 

  • Traynelis SF, Cull-Candy SG (1991) Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones. J Physiol (Lond) 433: 727–763

    CAS  Google Scholar 

  • Traynelis SF, Hartley M, Heinemann SF (1995) Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 268: 873–876

    Article  PubMed  CAS  Google Scholar 

  • Trussell LO, Zhang S, Raman IM (1993) Desensitization of AMPA receptors upon multiquantal neurotransmitter release. Neuron 10: 1185–1196

    Article  PubMed  CAS  Google Scholar 

  • Tsuzuki K, Mochizuki S, Iino M, Mori H, Mishina M, Ozawa S (1994) Ion permeation properties of the cloned mouse e2/Ç1 NMDA receptor channel. Brain Res. Mol Brain Res 26: 37–46

    Google Scholar 

  • Vallano ML, Lambolez B, Audinat E, Rossier J (1996) Neuronal activity differentially regulates NMDA receptor subunit expression in cerebellar granule cells. J Neurosci 16: 631–639

    PubMed  CAS  Google Scholar 

  • van Hooft JA, Haas TF, Fuchs EC, Monyer H (1998) Different functional properties and specific expression patterns of exon 5 splice variants of the NMDAR1 subunit. Eur J Neurosci 10: 289

    Google Scholar 

  • Verdoorn TA, Burnashev N, Monyer H, Seeburg PH, Sakmann B (1991) Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252: 1715–1718

    Article  PubMed  CAS  Google Scholar 

  • Vicini S, Wang JF, Li JH, Zhu WJ, Wang YH, Luo JH, Wolfe BB, Grayson DR (1998) Functional and pharmacological differences between recombinant N-methyl-Daspartate receptors. J Neurophysiol 79: 555–566

    PubMed  CAS  Google Scholar 

  • Villarroel A, Regalado MP, Lerma J (1998) Glycine-independent NMDA receptor desensitization: localization of structural determinants. Neuron 20: 329–339

    Article  PubMed  CAS  Google Scholar 

  • Vissavajjhala P, Janssen WGM, Hu Y, Gazzaley AH, Moran T, Hof PR, Morrison JH (1996) Synaptic distribution of the AMPA-GluR2 subunit and its colocalization with calcium-binding proteins in rat cerebral cortex: an immunohistochemical study using a G1uR2-specific monoclonal antibody. Exp Neurol 142: 296–312

    Article  PubMed  CAS  Google Scholar 

  • Wafford KA, Kathoria M, Bain CJ, Marshall G, Le Bourdelles B, Kemp JA, Whiting PJ (1995) Identification of amino acids in the N-methyl-D-aspartate receptor NR1 subunit that contribute to the glycine binding site. Mol Pharmacol 47: 374380

    Google Scholar 

  • Washburn MS, Numberger M, Zhang S, Dingledine R (1997) Differential dependence of G1uR2 expression of three characteristic features of AMPA receptors. J Neurosci 17: 9393–9406

    PubMed  CAS  Google Scholar 

  • Watanabe M, Fukaya M, Sakimura K, Manabe T, Mishina M, Inoue Y (1998) Selective scarcity of NMDA receptor channel subunits in the stratum lucidum (mossy fibre-recipient layer) of the mouse hippocampal CA3 subfield. Eur J Neurosci 10: 478–487

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Inoue Y, Sakimura K, Mishina M (1993) Distinct distributions of five Nmethyl-D-aspartate receptor channel subunit mRNAs in the forebrain. J Comp Neurol 338: 377–390

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Mishina M, Inoue Y (1994) Distinct spatiotemporal expressions of five NMDA receptor channel subunit mRNAs in the cerebellum. J Comp Neurol 343: 513–519

    Article  PubMed  CAS  Google Scholar 

  • Watanabe S, Kusama-Eguchi K, Kobayashi H, Igarashi K (1991) Estimation of polyamine binding to macromolecules and ATP in bovine lymphocytes and rat liver. J Biol Chem 266: 20803–20809

    PubMed  CAS  Google Scholar 

  • Wenzel A, Fritschy JM, Mohler H, Benke D (1997) NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins. J Neurochem 68: 469–478

    Article  PubMed  CAS  Google Scholar 

  • Westbrook GL, Mayer ML (1987) Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328: 640–643

    Article  PubMed  CAS  Google Scholar 

  • Williams K (1993) Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 44: 851–859

    PubMed  CAS  Google Scholar 

  • Williams K (1995) Pharmacological properties of recombinant N-methyl-n-aspartate (NMDA) receptors containing the e4 (NR2D) subunit. Neurosci Letters 184: 181–184

    Article  CAS  Google Scholar 

  • Williams K, Chao J, Kashiwagi K, Masuko T, Igarashi K (1996) Activation of N-methylD-aspartate receptors by glycine: role of an aspartate residue in the M3–M4 loop of the NR1 subunit. Mol Pharmacol 50: 701–708

    PubMed  CAS  Google Scholar 

  • Williams K, Russell SL, Shen YM, Molinoff PB (1993) Developmental switch in the expression of NMDA receptors occurs in vivo and in vitro. Neuron 10: 267–278

    Article  PubMed  CAS  Google Scholar 

  • Williams K, Zappia AM, Pritchett DB, Shen YM, Molinoff PB (1994) Sensitivity of the N-methyl-D-aspartate receptor to polyamines is controlled by NR2 subunits. Mol Pharmacol 45: 803–809

    PubMed  CAS  Google Scholar 

  • Wollmuth LP, Kuner T, Sakmann B (1998) Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg’. J Physiol (Lond) 506: 13–32

    Article  CAS  Google Scholar 

  • Wyllie DJ, Behe P, Colquhoun D (1998) Single-channel activations and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors. J Physiol (Lond) 510: 1–18

    Article  CAS  Google Scholar 

  • Wyllie DJ, Behe P, Nassar M, Schoepfer R, Colquhoun D (1996) Single-channel currents from recombinant NMDA NR1a/NR2D receptors expressed in Xenopus oocytes. Proc Roy Soc London B: Biol Sci 263: 1079–1086

    Google Scholar 

  • Zhang S, Ehlers MD, Bernhardt JP, Su CT, Huganir RL (1998) Calmodulin mediates calcium-dependent inactivation of N-methyl-D-aspartate receptors. Neuron 21: 443–453

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Zhang L, Durand GM, Bennett MV, Zukin RS (1994) Mutagenesis rescues spermine and Zn’ potentiation of recombinant NMDA receptors. Neuron 12: 811–818

    Article  PubMed  CAS  Google Scholar 

  • Zukin RS, Bennett MV (1995) Alternatively spliced isoforms of the NMDARI receptor subunit. Trends in Neurosci 18: 306–313

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Monyer, H., Jonas, P., Rossier, J. (1999). Molecular Determinants Controlling Functional Properties of AMPARs and NMDARs in the Mammalian CNS. In: Jonas, P., Monyer, H. (eds) Ionotropic Glutamate Receptors in the CNS. Handbook of Experimental Pharmacology, vol 141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08022-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08022-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08539-0

  • Online ISBN: 978-3-662-08022-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics