Skip to main content

Cellular and Subcellular Distribution of Glutamate Receptors

  • Chapter
Book cover Ionotropic Glutamate Receptors in the CNS

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 141))

Abstract

The general distribution of ionotropic glutamate receptors has been described in numerous reviews (Hollmann and Heinemann 1994; Petralia and Wenthold 1996; Bahn and Wisden 1997; Petralia 1997; Watanabe 1997) and will be mentioned only briefly here. Glutamate receptors are found in nearly all neurons and in many types of glia in the central nervous system (CNS), as well as in many cells in the peripheral nervous system and in other structures. Each ionotropic glutamate receptor subunit shows a distinct pattern of distribution in the CNS. Some, such as the a-amino-3-hydroxy-5-methyl-4-isoxazole proprionate (AMPA) receptor subunits, G1uR2 and G1uR3, and the N-methyl-Daspartate (NMDA) receptor subunit NR1 are both abundant and widespread. Others, such as the AMPA receptor subunits, G1uR1 and GluR4, the NMDA receptor subunit NR2B, and the kainate receptor subunits, GluR5 and G1uR6, have a restricted distribution and are abundant in some areas of the brain and populations of neurons. For example, G1uR1 receptor subunits are abundant in most neurons of the hippocampus while they are rare in neurons of the cerebellum (although abundant in Bergmann glia; Fig. 1). Some glutamate receptor subunits, such as NR2 C and 82 which are expressed in cerebellar granule cells and Purkinje cells, respectively, are abundant only in one or a few structures. Finally, some ionotropic glutamate receptor subunits, such as the kainate receptor subunit, KA1, and 51, are expressed only at low levels. While the relative expression levels vary, most neurons express multiple subtypes and subunits of glutamate receptors. The variability in combinations and expression levels of receptors suggests that the properties of the physiological responses to glutamate, which are dependent on the composition of receptors, differ from neuron-to-neuron and synapse-to-synapse. For example, the virtual absence of GluR2 in AMPA receptors of most interneurons of the hippocampus and cerebral cortex indicates that these neurons express calcium-permeable AMPA receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison DW, Gelfand VI, Spector I, Craig AM (1998) Role of actin in anchoring post-synaptic receptors in cultured hippocampal neurons: Differential attachment of NMDA versus AMPA receptors. J Neurosci 18: 2423–2436

    Google Scholar 

  • Aoki C, Venkatesan C, Go C-G, Mong JA, Dawson TM (1994) Cellular and subcellular localization of NMDA-R1 subunit immunoreactivity in the visual cortex of adult and neonatal rats. J Neurosci 14: 5202–5222

    PubMed  CAS  Google Scholar 

  • Bahn S, Wisden W (1997) A map of non-NMDA receptor subunit expression in the vertebrate brain derived from in situ hybridization histochemistry. In: Monaghan DT, Wenthold RJ (eds) The ionotropic glutamate receptors. Humana Press Inc., Totowa, NJ, pp 149–187

    Chapter  Google Scholar 

  • Baude A, Nusser Z, Molnar E, Mcllhinney RAJ, Somogyi P (1995) High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus. Neuroscience 69: 1031–1055

    Article  PubMed  CAS  Google Scholar 

  • Benke TA, Jones OT, Collingridge GL, Angelides KJ (1993) N-methyl-D-aspartate receptors are clustered and immobilized on dendrites of living cortical neurons. Proc Natl Acad Sci USA 90: 7819–7823

    Article  PubMed  CAS  Google Scholar 

  • Bernard V, Somogyi P, Bolam JP (1997) Cellular, subcellular, and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat. J Neurosci [Correction (1997) 17:7180] 17: 819–833

    CAS  Google Scholar 

  • Bi X, Chen J, Dang S, Wenthold RJ, Tocco G, Baudry M (1997) Characterization of calpain-mediated proteolysis of GIuR1 subunits of a-amino-3-hydroxy-5methylisoxazole-4-propionate receptors in rat brain. J Neurochem 68: 14841494

    Google Scholar 

  • Chittajallu R, Vignes M, Dev KK, Barnes JM, Collingridge GL, Henley JM (1996) Regulation of glutamate release by presynaptic kainate receptors in the hippocampus. Nature 379: 78–81

    Article  PubMed  CAS  Google Scholar 

  • Clark BA, Farrant M, Cull-Candy SG (1997) A direct comparison of the single-channel properties of synaptic and extrasynaptic NMDA receptors. J Neurosci 17: 107116

    Google Scholar 

  • Craig AM, Blackstone CD, Huganir RL, Banker G (1993) The distribution of glutamate receptors in cultured rat hippocampal neurons: Postsynaptic clustering of AMPA-selective subunits. Neuron 10: 1055–1068

    Google Scholar 

  • Craig AM, Blackstone CD, Huganir RL, Banker G (1994) Selective clustering of glutamate and y-aminobutyric acid receptors opposite terminals releasing the corresponding neurotransmitters. Proc Natl Acad Sci USA 91: 12373–12377

    Article  PubMed  CAS  Google Scholar 

  • Craven SE, Bredt DS (1998) PDZ proteins organize synaptic signaling pathways. Cell 93: 495–498

    Article  PubMed  CAS  Google Scholar 

  • Derrick BE, Weinberger SB, Martinez JL (1991) Opioid receptors are involved in an NMDA receptor-independent mechanism of LTP induction at hippocampal mossy fiber-CA3 synapses. Brain Res Bull 27: 219–223

    Article  PubMed  CAS  Google Scholar 

  • Doherty AJ, Collingridge GL, Henley JM (1997) GFP fusion proteins and AMPA receptor trafficking. Biochem Soc Trans 25:540 S

    Google Scholar 

  • Dotti CG, Simons K (1990) Polarized sorting of viral glycoproteins to the axon and dendrites of hippocampal neurons in culture. Cell 62: 63–72

    Article  PubMed  CAS  Google Scholar 

  • Drubin DG, Nelson WJ (1996) Origins of cell polarity. Cell 84: 335–344

    Article  PubMed  CAS  Google Scholar 

  • Durand GM, Kovalchuk Y, Konnerth A (1996) Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381: 71–75

    Article  PubMed  CAS  Google Scholar 

  • Ehlers MD, Mammen AL, Lau L-F, Huganir RL (1996) Synaptic targeting of glutamate receptors. Curr Opin Cell Biol 8: 484–489

    Article  PubMed  CAS  Google Scholar 

  • Eshhar N, Petralia RS, Winters CA, Niedzielski AS, Wenthold RJ (1993) The segregation and expression of glutamate receptor subunits in cultured hippocampal neurons. Neuroscience 57: 943–964

    Article  PubMed  CAS  Google Scholar 

  • Feron O, Smith TW, Michel T, Kelly RA (1997) Dynamic targeting of the agonist-stimulated m2 muscarinic acetylcholine receptor to caveolae in cardiac myocytes. J Biol Chem 272: 17744–17748

    Article  PubMed  CAS  Google Scholar 

  • Fischer Y, Thomas J, Sevilla L, Munoz P, Becker C, Holman G, Kozka IJ, Palacin M, Testar X, Kammermeier H, Zorzano A (1997) Insulin-induced recruitment of glucose transporter 4 (GLUT4) and GLUT1 in isolated rat cardiac myocytes. J Biol Chem 272: 7085–7092

    Article  PubMed  CAS  Google Scholar 

  • Fritschy JM, Weinmann O, Wenzel A, Benke D (1998) Synapse-specific localization of NMDA and GABA(A) receptor subunits revealed by antigen-retrieval immunohistochemistry. J Comp Neurol 390: 194–210

    Article  PubMed  CAS  Google Scholar 

  • Gazzaley AH, Benson DL, Huntley GW, Morrison JH (1997) Differential subcellular regulation of NMDAR1 protein and mRNA in dendrites of dentate gyrus granule cells after perforant path transection. J Neurosci 17: 2006–2017

    PubMed  CAS  Google Scholar 

  • Gottmann K, Mehrle A, Gisselmann G, Hatt H (1997) Presynaptic control of subunit composition of NMDA receptors mediating synaptic plasticity. J Neurosci 17: 2766–2774

    PubMed  CAS  Google Scholar 

  • Hall RA, Soderling TR (1997a) Differential surface expression and phosphorylation of the N-methyl-D-aspartate receptor subunits NR1 and NR2 in cultured hippocampal neurons. J Biol Chem 272: 4135–4140

    Article  PubMed  CAS  Google Scholar 

  • Hall RA, Soderling TR (1997b) Quantitation of AMPA receptor surface expression in cultured hippocampal neurons. Neuroscience 78: 361–371

    Article  PubMed  CAS  Google Scholar 

  • Harris KM, Sultan P (1995) Variation in the number, location and size of synaptic vesicles provides an anatomical basis for the nonuniform probability of release at hippocampal CA1 synapses. Neuropharmacology 34: 1387–1395

    Article  PubMed  CAS  Google Scholar 

  • Musser M, Roth A (1997) Dendritic and somatic glutamate receptor channels in rat cerebellar Purkinje cells. J Physiol 501: 77–95

    Article  Google Scholar 

  • Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279: 519–526

    Article  PubMed  CAS  Google Scholar 

  • Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17: 31–108

    Article  PubMed  CAS  Google Scholar 

  • Huh KH, Wenthold RJ (1999) Turnover analysis of glutamate receptors identifies a rapidly degraded pool of the N-methyl-D-aspartate receptor subunit, NRI, in cultured cerebellar granule cells. J Biol Chem 274: 151–157

    Google Scholar 

  • Huntley GW, Vickers JC, Janssen W, Brose N, Heinemann SF, Morrison JH (1994) Distribution and synaptic localization of immunocytochemically identified NMDA receptor subunit proteins in sensory-motor and visual cortices of monkey and human. J Neurosci 14: 3603–3619

    PubMed  CAS  Google Scholar 

  • Isaac JTR, Nicoll RA, Malenka RC (1995) Evidence for silent synapses: implications for the expression of LTP. Neuron 15: 427–434

    Article  PubMed  CAS  Google Scholar 

  • Kashiwabuchi N, Ikeda K, Araki K, Hirano T, Shibuki K, Takayama C, Inoue Y, Kutsuwada T, Yagi T, Kang Y, Aizawa S, Mishina M (1995) Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in G1uR82 mutant mice. Cell 8: 245–252

    Article  Google Scholar 

  • Kennedy MB (1997) The postsynaptic density at glutamatergic synapses. Trends Neurosci 20: 264–268

    Article  PubMed  CAS  Google Scholar 

  • Kharazia VN, Phend KD, Rustioni A, Weinberg RJ (1996a) EM colocalization of AMPA and NMDA receptor subunits at synapses in rat cerebral cortex. Neurosci Lett 210: 37–40

    Article  PubMed  CAS  Google Scholar 

  • Kharazia VN, Wenthold RJ, Weinberg RJ (1996b) G1uR1-immunopositive interneurons in rat neocortex. J Comp Neurol 368: 399–412

    Article  PubMed  CAS  Google Scholar 

  • Kharazia VN, Weinberg RJ (1997) Tangential synaptic distribution of NMDA and AMPA receptors in rat neocortex. Neurosci Lett 238: 41–44

    Article  PubMed  CAS  Google Scholar 

  • Kirsch J, Betz H (1998) Glycine-receptor activation is required for receptor clustering in spinal neurons. Nature 392: 717–720

    Article  PubMed  CAS  Google Scholar 

  • Kirsch J, Meyer G, Betz H (1996) Synaptic targeting of ionotropic neurotransmitter. Mol Cell Neurosci 8: 93–98

    Article  CAS  Google Scholar 

  • Kurihara H, Hashimoto K, Kano M, Takayama C, Sakimura K, Mishina M, Inoue Y, Watanabe M (1997) Impaired parallel fiber-Purkinje cell synapse stabilization during cerebellar development of mutant mice lacking the glutamate receptor 62 subunit. J Neurosci 17: 9613–9623

    PubMed  CAS  Google Scholar 

  • Kutsuwada T, Sakimura K, Manabe T, Takayama C, Katakura N, Kushiya E, Natsume R, Watanabe M, Inoue Y, Yagi T, Aizawa S, Arakawa M, Takahashi T, Nakamura Y, Mori H, Mishina M (1996) Impairment of suckling response, trigeminal neu-ronal pattern formation, and hippocampal LTD in NMDA receptor £2 subunit mutant mice. Neuron 16: 333–344

    Article  PubMed  CAS  Google Scholar 

  • Landsend AS, Amiry-Moghaddam M, Matsubara A, Bergersen L, Usami S, Wenthold RJ, Ottersen OP (1997) Differential localization of 8 glutamate receptors in the rat cerebellum: Coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci 17: 834–842

    Google Scholar 

  • Lerma J (1997) Kainate reveals its targets. Neuron 19: 1155–1158

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Wang H, Sheng M, Jan LY, Jan YN, Basbaum AI (1994) Evidence for presynaptic N-methyl-D-aspartate autoreceptors in the spinal cord dorsal horn. Proc Natl Acad Sci USA 91: 8383–8387

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC, Nicoll RA (1997) Silent synapses speak up. Neuron 19: 473–476

    Article  PubMed  CAS  Google Scholar 

  • Malva JO, Carvalho AP, Carvalho CM (1998) Kainate receptors in hippocampal CA3 subregion: evidence for a role in regulating neurotransmitter release. Neurochem Int 32: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Mammen AL, Huganir RL, O’Brien RJ (1997) Redistribution and stabilization of cell surface glutamate receptors during synapse formation. J Neurosci 17: 7351–7358

    PubMed  CAS  Google Scholar 

  • Martin LJ, Blackstone CD, Levey AI, Huganir RL, Price DL (1993) AMPA glutamate receptor subunits are differentially distributed in rat brain. Neuroscience 53: 327–358

    Article  PubMed  CAS  Google Scholar 

  • Martin LJ, Furuta A, Blackstone CD (1998) AMPA receptor protein in developing rat brain: Glutamate receptor-1 expression and localization change at regional, cellular, and subcellular levels with maturation. Neuroscience 83: 917–928

    Article  PubMed  CAS  Google Scholar 

  • Matsubara A, Laake JH, Davanger S, Usami S, Ottersen OP (1996) Organization of AMPA receptor subunits at a glutamate synapse: A quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J Neurosci 16: 44574467

    Google Scholar 

  • Mermall V, Post PL, Mooseker MS (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279: 527–533

    Article  PubMed  CAS  Google Scholar 

  • Mironov AA, Weidman P, Luini A (1997) Variations on the intracellular transport theme: Maturing cisternae and trafficking tubules. J Cell Biol 138: 481–484

    Google Scholar 

  • Miyashiro K, Dichter M, Eberwine J (1994) On the nature and differential distribution of mRNAs in hippocampal neurites: Implications for neuronal functioning. Proc Natl Acad Sci USA 91: 10800–10804

    Google Scholar 

  • Molitor SC, Manis PB (1997) Evidence for functional metabotropic glutamate receptors in the dorsal cochlear nucleus. J Neurophysiol 77: 1889–1905

    PubMed  CAS  Google Scholar 

  • Molnar E, Baude A, Richmond SA, Patel PB, Somogyi P, Mcllhinney RAJ (1993) Biochemical and immunocytochemical characterization of antipeptide antibodies to a cloned G1uR1 glutamate receptor subunit: Cellular and subcellular distribution in the rat forebrain. Neuroscience 53: 307–326

    Google Scholar 

  • Nakata T,Terada S, Hirokawa N (1998) Visualization of the dynamics of synaptic vesicle and plasma membrane proteins in living axons. J Cell Biol 140: 659–674.

    Article  Google Scholar 

  • Nusser Z, Mulvihill E, Streit P, Somogyi P (1994) Subsynaptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization. Neuroscience 61: 421–427

    Article  PubMed  CAS  Google Scholar 

  • Nusser Z, Sieghart W, Benke D, Fritschy J-M, Somogyi P (1996a) Differential synaptic localization of two major y-aminobutyric acid type A receptor a subunits on hippocampal pyramidal cells. Proc Natl Acad Sci USA 93: 11939–11944

    Article  PubMed  CAS  Google Scholar 

  • Nusser Z, Sieghart W, Stephenson FA, Somogyi P (1996b) The a6 subunit of the GABAA receptor is concentrated in both inhibitory and excitatory synapses on cerebellar granule cells. J Neurosci 16: 103–114

    PubMed  CAS  Google Scholar 

  • Nusser Z, Sieghart W, Somogyi P (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells. J Neurosci 18: 1693–1703

    PubMed  CAS  Google Scholar 

  • O’Brien RJ, Mammen AL, Blackshaw S, Ehlers MD, Rothstein JD, Huganir RL (1997) The development of excitatory synapses in cultured spinal neurons. J Neurosci 17: 7339–7350

    PubMed  Google Scholar 

  • Ohishi H, Ogawa-Meguro R, Shigemoto R, Kaneko T, Nakanishi S, Mizuno N (1994) Immunohistochemical localization of metabotropic glutamate receptors, mGluR2 and mGluR3, in rat cerebellar cortex. Neuron 13: 55–66

    Article  PubMed  CAS  Google Scholar 

  • Ozaki M, Sasner M, Yano R, Lu HS, Buonanno A (1997) Neuregulin-ß induces expression of an NMDA-receptor subunit. Nature 390: 691–694

    PubMed  CAS  Google Scholar 

  • Parton RG, Simons K, Dotti CG (1992) Axonal and dendritic endocytic pathways in cultured neurons. J Cell Biol 119: 123–137

    Article  PubMed  CAS  Google Scholar 

  • Pawson T, Scott JD (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science 278: 2075–2080

    Article  PubMed  CAS  Google Scholar 

  • Perez-Velazquez JL, Angelides KJ (1993) Assembly of GABAA receptor subunits determines sorting and localization in polarized cells. Nature 361: 457–460

    Article  PubMed  CAS  Google Scholar 

  • Peters A, Palay SL, Webster HD (1991) The fine structure of the nervous system, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Petralia RS (1997) Immunocytochemical localization of ionotropic glutamate receptors (GluRs) in neural circuits. In: Monaghan DT, Wenthold RJ (eds) The ionotropic glutamate receptors. Humana Press, Totowa, NJ, pp 219–263

    Chapter  Google Scholar 

  • Petralia RS, Wenthold RJ (1992) Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J Comp Neurol 318: 329–354

    Article  PubMed  CAS  Google Scholar 

  • Petralia RS, Yokotani N, Wenthold RJ (1994a) Light and electron microscope distribution of the NMDA receptor subunit NMDAR1 in the rat nervous system using a selective anti-peptide antibody. J Neurosci 14: 667–696

    PubMed  CAS  Google Scholar 

  • Petralia RS, Wang Y.-X, Wenthold RJ (1994b) The NMDA receptor subunits NR2 A and NR2B show histological and ultrastructural localization patterns similar to those of NR1. J Neurosci 14: 6102–6120

    PubMed  CAS  Google Scholar 

  • Petralia RS, Wenthold RJ (1996) Types of excitatory amino acid receptors and their localization in the nervous system and hypothalamus. In: Brann DW, Mahesh VB (eds) Excitatory amino acids: Their role in neuroendocrine function. CRC, Boca Raton, FL, pp 55–101

    Google Scholar 

  • Petralia RS, Wang Y-X, Niedzielski AS, Wenthold RJ (1996a) The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations. Neuroscience 71: 949–976

    Article  PubMed  CAS  Google Scholar 

  • Petralia RS, Wang Y-X, Zhao H-M, Wenthold RJ (1996b) Ionotropic and metabotropic glutamate receptors show unique postsynaptic, presynaptic and glial localizations in the dorsal cochlear nucleus. J Comp Neurol 372: 356–383

    Article  PubMed  CAS  Google Scholar 

  • Petralia RS, Wang Y-X, Mayat E, Wenthold RJ (1997) Glutamate receptor subunit 2-selective antibody shows a differential distribution of calcium-impermeable AMPA receptors among populations of neurons. J Comp Neurol 385: 456476

    Google Scholar 

  • Petralia RS, Zhao H-M, Wang Y-X, Wenthold RJ (1998) Variations in the tangential distribution of postsynaptic glutamate receptors in Purkinje cell parallel and climbing fiber synapses during development. Neuropharmacology 37: 1321–1334

    Article  PubMed  CAS  Google Scholar 

  • Petralia RS, Esteban J, Wang Y-X, Partridge JG, Zhao H-M, Wenthold RJ, Malinow R (1999) Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nature Neurosci 2: 31–36

    Article  PubMed  CAS  Google Scholar 

  • Rabacchi S, Bailly Y, Delhaye-Bouchaud N, Mariani J (1992) Involvement of the Nmethyl-D-aspartate ( NMDA) receptor in synapse elimination during cerebellar development. Science 256: 1823–1825.

    Google Scholar 

  • Rao A, Craig AM (1997) Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 19: 801–812

    Article  PubMed  CAS  Google Scholar 

  • Rao A, Kim E, Sheng M, Craig AM (1998) Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture. J Neurosci 18: 1217–1229

    PubMed  CAS  Google Scholar 

  • Riezman H, Woodman PG, van Meer G (1997) Molecular mechanisms of endocytosis. Cell 91: 731–738

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca’ responses. Science 280: 1763–1766

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Moreno A, Herreras O, Lerma J (1997) Kainate receptors presynaptically downregulate GABAergic inhibition in the rat hippocampus. Neuron 19: 893–901

    Article  PubMed  CAS  Google Scholar 

  • Rubio ME, Wenthold RJ (1997) Glutamate receptors are selectively targeted to post-synaptic sites in neurons. Neuron 18: 939–950

    Article  PubMed  CAS  Google Scholar 

  • Rubio ME, Wenthold RJ (1999) Differential distribution of intracellular glutamate receptors in dendrites. J Neurosci 19: 5549–5562

    PubMed  CAS  Google Scholar 

  • Ruegg MA, Bixby JL (1998) Agrin ochestrates synaptic differentiation at the vertebrate neuromuscular junction. Trends Neurosci 21: 22–27

    Article  PubMed  CAS  Google Scholar 

  • Shigemoto R, Kulik A, Roberts JDB, Ohishi H, Nusser Z, Kaneko T, Somogyi P (1996) Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone. Nature 381: 523–525

    Article  PubMed  CAS  Google Scholar 

  • Siegel SJ, Brose N, Janssen WG, Gasic GP, Jahn R, Heinemann SF, Morrison JH (1994) Regional, cellular, and ultrastructural distribution of N-methyl-D-aspartate receptor subunit 1 in monkey hippocampus. Proc Natl Acad Sci USA 91: 564–568

    Article  PubMed  CAS  Google Scholar 

  • Spacek J, Harris KM (1997) Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CAl dendrites and dendritic spines of the immature and mature rat. J Neurosci 17: 190–203

    PubMed  CAS  Google Scholar 

  • Sprengel R, Suchanek B, Amico C, Brusa R, Burnashev N, Rozov A, Hvalby 0, Jensen V, Paulsen O, Andersen P, Kim JJ, Thompson RF, Sun W, Webster LC, Grant SGN, Eilers J, Konnerth A, Li J, McNamara JO, Seeburg PH (1998) Importance of the intracellular domain of NR2 subunits for NMDA receptor function in vivo. Cell 92: 279–289

    Article  PubMed  CAS  Google Scholar 

  • Spruston N, Jonas P, Sakmann B (1995) Dendritic glutamate receptor channels in rat hippocampal CA3 and CAl pyramidal neurons. J Physiol 482: 325–352

    PubMed  CAS  Google Scholar 

  • Steward 0 (1994) Dendrites as compartments for macromolecular synthesis. Proc Natl Acad Sci. USA 91: 10766–10768

    Article  Google Scholar 

  • Steward 0 (1997) mRNA localization in neurons: A multipurpose mechanism? Neuron 18: 9–12

    Google Scholar 

  • Takayama C, Nakagawa S, Watanabe M, Mishina M, Inoue Y (1996) Developmental changes in expression and distribution of the glutamate receptor channel 82 subunit according to the Purkinje cell maturation. Dev Brain Res 92: 147–155

    Article  CAS  Google Scholar 

  • Tolbert LM, Lameh J (1996) Human muscarinic cholinergic receptor Hm1 internalizes via clathrin-coated vesicles. J Biol Chem 271: 17335–17342

    Article  PubMed  CAS  Google Scholar 

  • Torre ER, Steward 0 (1996) Protein synthesis within dendrites: Glycosylation of newly synthesized proteins in dendrites of hippocampal neurons in culture. J Neurosci 16: 5967–5978

    Google Scholar 

  • Toth K, McBain CJ (1998) Afferent specific innervation of two distinct AMPA recep- tor subtypes on single hippocampal interneurons. Nature Neurosci 1: 572–578

    Article  PubMed  CAS  Google Scholar 

  • Triller A, Cluzeaud F, Pfeiffer F, Betz H (1985) Distribution of glycine receptors at central synapses: An immunoelectron microscopy study. J Cell Biol 101: 683688

    Google Scholar 

  • Vallano ML, Lambolez B, Audinat E, Rossier J (1996) Neuronal activity differentially regulates NMDA receptor subunit expression in cerebellar granule cells. J Neurosci 16: 631–639

    PubMed  CAS  Google Scholar 

  • Wang JKT, Thukral V (1996) Presynaptic NMDA receptors display physiological characteristics of homomeric complexes of NR1 subunits that contain the exon 5 insert in the N-terminal domain. J Neurochem 66: 865–868

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-X, Wenthold RJ, Ottersen OP, Petralia RS (1998) Endbulb synapses in the anteroventral cochlear nucleus express a specific subset of AMPA-type glutamate receptor subunits. J Neurosci 18: 1148–1160

    PubMed  CAS  Google Scholar 

  • Watanabe M (1997) Developmental dynamics of gene expression for NMDA receptor channel. In: Monaghan DT, Wenthold RJ (eds) The ionotropic glutamate receptors. Humana Press Inc., Totowa, NJ, pp 189–218

    Chapter  Google Scholar 

  • Wenthold RJ, Parakkal MH, Oberdorfer MD, Altschuler RA (1988) Glycine receptor immunoreactivity in the ventral cochlear nucleus of the guinea pig. J Comp Neurol 276: 423–435

    Article  PubMed  CAS  Google Scholar 

  • Wenthold RJ, Petralia RS, Blahos J II, Niedzielski AS (1996) Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci 16: 1982–1989

    PubMed  CAS  Google Scholar 

  • Wozniak M, Limbird LE (1996) The three a2-adrenergic receptor subtypes achieve basolateral localization in Madin-Darby canine kidney II cells via different targeting mechanisms. J Biol Chem 271: 5017–5024

    Article  PubMed  CAS  Google Scholar 

  • Wu G-Y, Malinow R, Cline HT (1996) Maturation of a central glutamatergic synapse. Science 274: 972–976

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Liaw J-S, Baudry M, Berger TW (1997) Novel expression mechanism for synaptic potentiation: Alignment of presynaptic release site and postsynaptic receptor. Proc Natl Acad Sci USA 94: 6983–6988

    Google Scholar 

  • Zalutsky RA, Nicoll RA (1990) Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248: 1619–1624

    Article  PubMed  CAS  Google Scholar 

  • Zhao H-M, Wenthold RJ, Wang Y-X, Petralia RS (1997) Delta glutamate receptors are differentially distributed at parallel and climbing fiber synapses on Purkinje cells. J Neurochem 68: 1041–1052

    Article  PubMed  CAS  Google Scholar 

  • Zhao H-M, Wenthold RJ, Petralia RS (1998) Glutamate receptor targeting to synaptic populations on Purkinje cells is developmentally regulated. J Neurosci 18: 5517–5528.

    PubMed  CAS  Google Scholar 

  • Ziff EB (1997) Enlightening the postsynaptic density. Neuron 19: 1163–1174

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Petralia, R.S., Rubio, M.E., Wenthold, R.J. (1999). Cellular and Subcellular Distribution of Glutamate Receptors. In: Jonas, P., Monyer, H. (eds) Ionotropic Glutamate Receptors in the CNS. Handbook of Experimental Pharmacology, vol 141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08022-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08022-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08539-0

  • Online ISBN: 978-3-662-08022-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics