Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 283))

Abstract

Influenza viruses cause annual epidemics and occasional pandemics of acute respiratory disease. Vaccination is the primary means to prevent and control the disease. However, influenza viruses undergo continual antigenic variation, which requires the annual reformulation of trivalent influenza vaccines, making influenza unique among pathogens for which vaccines have been developed. The segmented nature of the influenza virus genome allows for the traditional reassortment between two viruses in a coinfected cell. This technique has long been used to generate strains for the preparation of either inactivated or live attenuated influenza vaccines. Recent advancements in reverse genetics techniques now make it possible to generate influenza viruses entirely from cloned plasmid DNA by cotransfection of appropriate cells with 8 or 12 plasmids encoding the influenza virion sense RNA and/or mRNA. Once regulatory issues have been addressed, this technology will enable the routine and rapid generation of strains for either inactivated or live attenuated influenza vaccine. In addition, the technology offers the potential for new vaccine strategies based on the generation of genetically engineered donors attenuated through directed mutation of one or more internal genes. Reverse genetics techniques are also proving to be important for the development of pandemic influenza vaccines, because the technology provides a means to modify genes to remove virulence determinants found in highly pathogenic avian strains. The future of influenza prevention and control lies in the application of this powerful technology for the generation of safe and more effective influenza vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Belshe RB, Gruber WC, Mendelman PM, et al. (2000) Efficacy of vaccination with live attenuated, cold-adapted, trivalent, intranasal influenza virus vaccine against a variant ( A/Sydney) not contained in the vaccine. J Pediatr 136: 168–175

    Article  PubMed  CAS  Google Scholar 

  • Belshe RB, Mendelman PM, Treanor J, et al. (1998) The efficacy of live attenuated, cold-adapted, trivalent, intranasal influenzavirus vaccine in children. N Eng J Med 338: 1405–1412

    Article  CAS  Google Scholar 

  • Beyer WEP, Palache AM, de Jong JC, Osterhaus ADME (2002) Cold-adapted influenza vaccine versus inactivated vaccine: systematic vaccine reactions, local and systemic antibody response, and vaccine efficacy A meta-analysis. Vaccine 20: 1340–1353

    Article  PubMed  CAS  Google Scholar 

  • Bridges CB, Thompson WW Meltzer et al. (2000) Effectiveness and cost benefit of influenza vaccination of healthy working adults: a randomized controlled trial. JAMA 284: 1655–1663

    Article  PubMed  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (2002) Prevention and control of influenza. Recommendations of the Advisory Committee on Immunization Practices (ACIP). Morb. Mort. Wkly Rep 51/No.RR-3: 1–31

    Google Scholar 

  • Cha T-A, Kao K, Zhao J, et al. (2002) Genotypic stability of cold-adapted influenza virus vaccine in an efficacy clinical trial. J Clin Micro 38: 839–845

    Google Scholar 

  • Chen W, Calco PA, Malide D, et al. (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7: 1306–12

    Article  PubMed  CAS  Google Scholar 

  • Clements ML, Murphy BR (1986) Development and persistence of local and systemic antibody responses in adults given live attenuated or inactivated influenza A virus vaccine. J Clin Micro 23: 66–72

    CAS  Google Scholar 

  • Clements ML, Subbarao EK, Fries LF, Karron RA, London WT, Murphy BR (1992) Use of single-gene reassortant viruses to study the role of avian influenza A virus genes in attenuation of wild-type human influenza A virus for squirrel monkeys and adult human volunteers. J Clin Micro 30: 655–662

    CAS  Google Scholar 

  • Cox NJ, Bender CA (1995) The molecular epidemiology of influenza virus. Sem Virol 6: 359–370

    Article  CAS  Google Scholar 

  • Cox NJ, Brammer TL, Regnery HL (1994) Influenza: Global surveillance for epidemic and pandemic variants. Eur J Epidemiol 10: 467–470

    Google Scholar 

  • Cox NJ, Kitame F, Kendal AP, Maassab HF, Naeve C (1988) Identification of sequence changes in the cold-adapted, live attenuated influenza vaccine strain, A/Ann/ Arbor/6/60 (H2N2). Virology 167: 553–567

    Google Scholar 

  • Edwards KM, Dupont WD, Westrich MK, Plummer Jr., WD, Palmer PS, Wright PF (1994) A randomized controlled trial of cold-adapted and inactivated vaccines for the prevention of influenza A disease. J Infect Dis 169: 68–76

    Article  PubMed  CAS  Google Scholar 

  • Enami M, Palese P (1991) High-efficiency formation of influenza virus transfectants. Journal of Virology. 65: 2711–3

    PubMed  CAS  Google Scholar 

  • Fodor E, Devenish L, Engelhardt OG, Palese P, Brownlee GG and Garcia-Sastre A (1999) Rescue of influenza A virus from recombinant DNA. Journal of Virology 73: 9679–82

    PubMed  CAS  Google Scholar 

  • Garcia-Sastre A, Egorov A, Matassov D, et al. (1998) Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252: 324–330

    Article  PubMed  CAS  Google Scholar 

  • Govaert TME, Thifs CTMCN Masurel N, Sprenger MJW Dinant GJ, Knottnerus JA (1994). Efficacy of influenza vaccination in elderly individuals: a randomized double-blind placebo-controlled trial. JAMA 272: 1661–1665

    Article  PubMed  CAS  Google Scholar 

  • Gregory V, Bennett M, Orkhan MH, Al Hajjar S, Varsano N, Mendelson E, Zambon M, Ellis J, Hay A, Lin YP (2002) Emergence of influenza A H1N2 reassortant viruses in the human population during 2001. Virology. 300: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Gruber WC, Kirschner K, Tollefson S, et al. (1993) Comparison of monovalent and trivalent live attenuated influenza vaccines in young children. J Infect Dis 168: 5360

    Google Scholar 

  • Guo YJ, Li JW, Cheng I, et al. (1999) Discovery of humans infected by avian influenza A (H9N2) virus. Chinese J Exp Clin Virol 15: 105–108

    Google Scholar 

  • Herlocher ML, Clavo A, Maassab HF (1996) Sequence comparison of A/AA/6/60 influenza viruses: mutations which may contribute to attenuation. Virus Res 42: 1125

    Article  Google Scholar 

  • Hoffmann E, Krauss S, Perez D, Webby R and Webster RG (2002a) Eight-plasmid system of rapid generation of influenza virus vaccines. Vaccine 20: 3165–3170

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann E, Mahmood K, Yang C-F, Webster RG, Greenberg HB and Kemble G (2002b) Rescue of influenza B virus from eight plasmids. Proc Natl Acad Sci USA 99: 11411–11416

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann E, Neumann G, Hobom G, Webster RG and Kawaoka Y (2000a) “Ambisense” approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template. Virology 267:310–317

    Google Scholar 

  • Hoffmann E, Neumann G, Kawaoka Y, Hobom G and Webster RG (2000b) A DNA transfection system for generation of influenza A virus from eight plasmids. Proceedings of the National Academy of Sciences of the United States of America 97: 6108–6113

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann E, Stech J, Guan Y, Webster RG and Perez DR (2001) Universal primer set for the full-length amplification of all influenza A viruses. Archives of Virology 146: 2275–2289

    Article  PubMed  CAS  Google Scholar 

  • Izurieta HS, Thompson WW, Kramarz P, et al. (2000) Influenza and the rates of hos- pitalization for respiratory disease among infants and young children. New Eng J Med 342: 232–9

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Lu B, Zhou H et al. (2003) Multiple amino acid residues confer temperature-sensitivity to human influenza virus vaccine strain (FluMistTM) derived from ca A/Ann Arbor/6/60. Virology 306: 18–24

    Article  PubMed  CAS  Google Scholar 

  • Johnson PR, Feldman S, Thompson JM, Mahoney JD, Wright PF (1986) Immunity to influenza A virus infection in young children: a comparison of natural infection, live cold-adapted vaccine, and inactivated vaccine. J Infect Dis 154: 121–127

    Article  PubMed  CAS  Google Scholar 

  • Karron RA, Steinhoff MC, Subbarao EK, et al. (1995) safety and immunogenicity of a cold-adapted influenza A (H1N1) reassortant virus vaccine administered to infants less than six months of age. Pediatr Infect Dis J 14: 10–16

    Google Scholar 

  • Kendal AP (1997) Cold-adapted live attenuated influenza vaccines developed in Russia: Can they contribute to meeting the need for influenza control in other countries? Eur J Epidemiol 13: 591–609

    Article  PubMed  CAS  Google Scholar 

  • Kendal AP, Maassab HF, Alexandrova GI, Ghendon YZ (1981) Development of cold-adapted recombinant live, attenuated influenza a vaccines in the USA and USSR. Antiviral Research 1: 339–365

    Article  Google Scholar 

  • Khan AS, Polezhaev F, Vasiljeva R et al. (1996) Comparison of US inactivated split-virus and Russian live attenuated, cold-adapted trivalent influenza vaccines in Russian schoolchildren. J Infect Dis 173: 453–456

    Article  PubMed  CAS  Google Scholar 

  • Kilbourne ED (1969) Future influenza vaccines and the use of genetic recombinants. Bulletin of the World Health Organization 41: 643–5

    PubMed  CAS  Google Scholar 

  • Klimov AI, Cox NJ, Yotov WV, et al. (1992) Sequence changes in the live attenuated, cold-adapted variants of influenza A/Leningrad/134/57 (H2N2) virus. Virology 186: 795–797

    Article  PubMed  CAS  Google Scholar 

  • Klimov AI, Egorov AY, Gushchina MI, et al. (1995) Genetic stability of cold-adapted reassortant vaccine strains before and after replication in children. J Gen Virol 76: 1521–1525

    Article  PubMed  CAS  Google Scholar 

  • Klimov AI, Kiseleva IV, GI Alexandrova, Cox NJ (2001) International Congress Series: Options for the Control of Influenza IV, Osterhaus A, Cox N, Hampson A, eds Excerpta Medica, Amsterdam, p955–959

    Google Scholar 

  • Klimov AI, Rudenko LG, Egorov AY, Romanova JR, Polezhaev FI, Alexandrova GI, Cox NJ (1996) Genetic stability of Russian cold-adapted live attenuated reassortant influenza vaccines. In: Brown LE, Hampson AW, Webster RG (eds) Options for the Control of Influenza III, Elsevier Sciences B.V. pp 129–136

    Google Scholar 

  • Li S, Liu C, Klimov A, et al. (1999) Recombinant influenza A virus vaccines for the pathogenic human A/Hong Kong/97 (H5N1) viruses. Journal of Infectious Diseases 179: 1132–8

    Article  PubMed  CAS  Google Scholar 

  • Luytjes W, Krystal M, Enami M, Pavin JD and Palese P (1989) Amplification, expression, and packaging of foreign gene by influenza virus. Cell 59: 1107–13

    Article  PubMed  CAS  Google Scholar 

  • Maassab HF (1967) Adaptation and growth characteristics of influenza virus at 25°C. Nature 213: 612–614

    Article  PubMed  CAS  Google Scholar 

  • Maassab HE 1968. Biologic and immunologic characteristics of cold-adapted influenza virus. J Immunol 102: 728–732

    Google Scholar 

  • Maassab HF, Kendal AP, Abrams GD, Monto AS (1982) Evaluation of a cold-recombinant influenza virus vaccine in ferrets. J Infect Dis 146: 780–790

    Article  PubMed  CAS  Google Scholar 

  • Meltzer MI, Cox NJ, Fukuda K (1999) The economic impact of pandemic influenza in the United States: priorities for intervention. Emerg Infect Dis 5: 659–671

    Article  PubMed  CAS  Google Scholar 

  • Mendelman PM, Cordova J, Cho I (2001) safety, efficacy and effectiveness of the influenza virus vaccine, trivalent, types A and B, live, cold-adapted ( CAIV-T) in healthy children and healthy adults. Vaccine 19: 2221–2226

    Google Scholar 

  • Mills J, Chanock RM (1971). Temperature-sensitive mutants of influenza virus. I. Be- haviour in tissue culture and in experimental animals. J Infect Dis 123: 145–157

    Google Scholar 

  • Murphy BR, Coelingh K (2002) Principles underlying the development and use of live attenuated cold-adapted influenza A and B virus vaccines. Viral Immunol 15: 295–323

    Article  PubMed  CAS  Google Scholar 

  • Murphy BR, Hinshaw VS, Sly DL, et al (1982a) Virulence of avian influenza A viruses for squirrel monkeys Infect immune 37: 1119–1126

    CAS  Google Scholar 

  • Murphy BR, Nelson DL, Wright PF, Tierney EL, Phelan MA, Chanock RM (1982b) Secretory and systemic immunological response in children infected with live attenuated influenza A virus vaccines. Infect Immun 36: 1102–1108

    PubMed  CAS  Google Scholar 

  • Murphy BR, Park EJ, Gottlieb P and Subbarao K (1997) An influenza A live attenuated reassortant virus possessing three temperature-sensitive mutations in the PB2 polymerase gene rapidly loses temperature sensitivity following replication in hamsters. Vaccine 15: 1372–8

    Article  PubMed  CAS  Google Scholar 

  • Muster T, Subbarao EK, Enami M, Murphy BR and Palese P (1991) An influenza A virus containing influenza B virus 5’ and 3’ noncoding regions on the neuraminidase gene is attenuated in mice. Proc Natl Acad Sci U S A 88: 5177–81

    Article  PubMed  CAS  Google Scholar 

  • Neumann G, Kawaoka Y (2002) Synthesis of influenza virus: new impetus from an old enzyme, RNA polymerase I. Virus Research 82: 153–158

    Google Scholar 

  • Neumann G, Watanabe T, Ito H, et al. (1999) Generation of influenza A viruses entirely from cloned cDNAs. Proceedings of the National Academy of Sciences USA 96: 9345–50

    Article  CAS  Google Scholar 

  • Neumann G, Watanabe T and Kawaoka Y (2000) Plasmid-driven formation of influenza virus-like particles. Journal of Virology 74: 547–51

    Article  PubMed  CAS  Google Scholar 

  • Neuzil KM, Mellen BG, Wright PF, Mitchel RF, Griffen MR (2000) Effect of influenza on hospitalization, outpatient visits, and courses of antibiotics in children. New Eng J Med 342: 225–31

    Article  PubMed  CAS  Google Scholar 

  • Nichol KL, Wuorenma J, Von Sternberg T (1998) Benefits of influenza vaccination for low-intermediate- and high-risk senior citizens. Arch Intern Med 158: 176976

    Google Scholar 

  • Nicholson KG (1998) Human influenza In: Nicholson KG, Webster RG, Hay AJ (eds), Textbook of Influenza Blackwell Science Ltd, Oxford, pp 219–264

    Google Scholar 

  • Nicholson KG, Tyrrell DAJ, Oxford JS, et al. (1987) Infectivity and reactogenicity of reassortant cold-adapted influenza A/Korea/1/82 vaccines obtained from USA and USSR. Bull WHO 65: 285–301

    Google Scholar 

  • Palache AM (1997) Influenza vaccines: a reappraisal of their use. Drugs 54:841–856 Palese P, Garcia-Sastre A (2002) Influenza vaccines: present and future. Journal of Clinical Investigation 110: 9–13

    Google Scholar 

  • Parkin NT, Chiu P and Coelingh KL (1996) Temperature sensitive mutants of influenza A virus generated by reverse genetics and clustered charged to alanine muta-genesis. Virus Res 46: 31–44

    Article  PubMed  CAS  Google Scholar 

  • Parkin NT, Chiu P and Coelingh K (1997) Genetically engineered live attenuated influenza A virus vaccine candidates. Journal of Virology 71: 2772–8

    PubMed  CAS  Google Scholar 

  • Patriarca PA, Weber JA, Parker RA et al (1985) Efficacy of influenza vaccine in nursing homes: reduction in illness and complications during influenza A (H3N2) epidemic. JAMA 253: 1136–1139

    Article  PubMed  CAS  Google Scholar 

  • Peiris M, Yuen KY, Leung CW, et al. (1999) Human infection with influenza H9N2. Lancet 354: 916–7

    Article  PubMed  CAS  Google Scholar 

  • Powers DC, Murphy BR, Fries LF, Adler WH, Clements ML (1992) Reduced infectivity of cold-adapted influenza A H1N1 viruses in the elderly: correlation with serum and local antibodies. J Am Geriatr Soc 40: 163–167

    PubMed  CAS  Google Scholar 

  • Rudenko LG, Alexandrova GI (2001) Current strategies for the prevention of influenza by the Russian cold-adapted live influenza vaccine among different populations. In: international Congress Series 1219: Options for the Control of Influenza IV, Osterhaus A, Cox N, Hampson A, eds Excerpta Medica, Amsterdam, p945–950

    Google Scholar 

  • Rudenko LG, Arden NH, Grigorieva E, et al. (2001) Immunogenicity and efficacy of Russian live attenuated and US inactivated vaccines used alone and in combination in nursing home residents. Vaccine 19: 308–318

    Article  Google Scholar 

  • Rudenko LG, Slepushkin AN, Monto AS et al. (1993) Efficacy of live attenuated and inactivated influenza vaccines in schoolchildren and their unvaccinated contacts in Novgorod, Russia. J Infect Dis 168: 881–887

    Article  CAS  Google Scholar 

  • Salvatore M, Basler CF, Parisien JP, et al. (2002) Effects of influenza A virus NS1 protein on protein expression: the NS1 protein enhances translation and is not required for shutoff of host protein synthesis. Journal of Virology 76: 1206–1212

    Article  PubMed  CAS  Google Scholar 

  • Schickli JH, Flandorfer A, Nakaya T, Martinez-Sobrido L, Garcia-Sastre A and Palese P (2001) Plasmid-only rescue of influenza A virus vaccine candidates. Philos Trans R Soc Lond B Biol Sci 356: 1965–1973

    Article  PubMed  CAS  Google Scholar 

  • Simonsen L, Clarke MJ, Schonberger LB, Arden NA, Cox NJ, Fukuda K (1998) Pandemic versus epidemic influenza mortality: a pattern of changing age distribution. J Infect Dis178: 53–60

    Google Scholar 

  • Snyder MH, Betts RF, De Borde D, et al. (1988) Four viral genes independently contribute to attenuation of live influenza A/Ann Arbor/6/60 (H2N2) cold-adapted reassortant virus vaccines. J Virol 62: 488–495

    PubMed  CAS  Google Scholar 

  • Steinhoff MC, Halsey NA, Wilson MH et al. (1991) The A/Mallard/6750/78 avian-human but not the A/Ann Arbor/6/60 cold-adapted, influenza A/Kawasaki/86 (H1N1) reassortant virus vaccine retains partial virulence for infants and children J Infect Dis 163: 1023–1028

    CAS  Google Scholar 

  • Subbarao K, Katz J (2000) Avian influenza viruses infecting humans. Cellular and Molecular Life Sciences 57: 1770–1784

    Article  PubMed  CAS  Google Scholar 

  • Subbarao EK, Kawaoka Y and Murphy BR (1993a) Rescue of an influenza A virus wild-type PB2 gene and a mutant derivative bearing a site-specific temperature-sensitive and attenuating mutation. J Virol 67: 7223–8

    PubMed  CAS  Google Scholar 

  • Subbarao K, Klimov A, Katz J, et al. (1998) Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279: 393–6

    Article  PubMed  CAS  Google Scholar 

  • Subbarao EK, London W, Murphy BR (1993b) A single amino acid in the PB2 gene of influenza A viruses is a determinant of host range. J Virol 67: 1761–1764

    PubMed  CAS  Google Scholar 

  • Subbarao K, Chen H, Swayne D, et al. (2003) Evaluation of a genetically modified reassortant H5N1 influenza A virus vaccine. Virology in press

    Google Scholar 

  • Subbarao EK, Park EJ, Lawson CM, Chen AY and Murphy BR (1995) Sequential addition of temperature-sensitive missense mutations into the PB2 gene of influenza A transfectant viruses can effect an increase in temperature sensitivity and attenuation and permits the rational design of a genetically engineered live influenza A virus vaccine. J Virol 69: 5969–77

    PubMed  CAS  Google Scholar 

  • Subbarao EK, Perkins M, Treanor JJ, Murphy BR (1992) The attenuation phenotype conferred by the M gene of the influenza A/Ann Arbor/6/60 cold-adapted virus (H2N2) on the A/Korea/82 (H3N2) reassortant virus results from a gene constellation effect. Virus Res 25: 37–50

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Pekosz A, Shuck K, Pinto LH and Lamb RA (2002) Influenza A virus M2 ion channel activity is essential for efficient replication in tissue culture. Journal of Virology 76: 1391–1399

    Article  PubMed  CAS  Google Scholar 

  • Talon J, Salvatore M, O’Neill RE, et al. (2000) Influenza A and B viruses expressing altered NS1 proteins: A vaccine approach. Proceedings of the National Academy of Sciences of the United States of America 97: 4309–4314

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Urabe M, Goto H and Tobita K (1984) Isolation and preliminary characterization of a highly cytolytic influenza B virus variant with an aberrant NS gene. Virology 135: 515–523

    Article  PubMed  CAS  Google Scholar 

  • Tobita K, Tanaka T, Odagiri T, Tashiro M and Feng SY (1990) Nucleotide sequence and some biological properties of the NS gene of a newly isolated influenza B virus mutant which has a long carboxyl terminal deletion in the NS1 protein. Virology 174: 314–9

    Article  PubMed  CAS  Google Scholar 

  • Tolpin MD, Massicot JG, Mullinex MG, et al. (1981). Genetic factors associated with loss of the temperature-sensitive phenotype of the influenza A/Alaska/77-ts-1A2 recombinant during growth in vivo. 112: 505–517

    CAS  Google Scholar 

  • Treanor JJ, Kotloff K, Betts RF, et al. (2000) Evaluation of trivalent, live, cold-adapted (CAIV-T) and inactivated influenza vaccine in prevention of virus infection and illness following challenge of adults with wild-type influenza A (H1N1), A (H3N2), and B viruses. Vaccine 18: 899–906

    Article  Google Scholar 

  • Watanabe T, Watanabe S, Ito H, Kida H and Kawaoka Y (2001) Influenza A virus can undergo multiple cycles of replication without M2 ion channel activity. Journal of Virology 75: 5656–62

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Watanabe S, Neumann G, Kida H and Kawaoka Y (2002) Immunogenicity and protective efficacy of replication-incompetent influenza virus-like particles. Journal of Virology 76: 767–73

    Article  PubMed  CAS  Google Scholar 

  • Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses Microbiol Rev 56: 152–179

    CAS  Google Scholar 

  • Wright PF, Webster RG (2001) Orthomyxoviruses. In: Knipe DM, Howley PM (eds) Fields’ Virology 4’h ed Lippincott-Raven, Philadelphia, pp 1533–1579

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Subbarao, K., Katz, J.M. (2004). Influenza Vaccines Generated by Reverse Genetics. In: Kawaoka, Y. (eds) Biology of Negative Strand RNA Viruses: The Power of Reverse Genetics. Current Topics in Microbiology and Immunology, vol 283. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06099-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06099-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07375-5

  • Online ISBN: 978-3-662-06099-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics