Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 272))

Abstract

The adenovirus genome encodes more than 40 proteins, of which 11 combine with the viral DNA to form an icosahedral capsid of ~ 150 MDa molecular weight and ~ 900 Å in diameter. This chapter reviews the information that structural biology techniques have provided about the adenovirus proteins and capsid. The structures of two capsid proteins (hexon and fiber) and two non-structural polypeptides (DNA-binding protein and protease) have been solved by X-ray crystallography. Fiber and its knob have been the focus of the latest structural studies, due to their role in host recognition and conseqnently in virus targeting for human gene therapy.The current model for hte large capsid comes from a combination of electron microscopy and crystallogrphy. The resultand imgaes have revealed a surprising similarity between adenovirus and a bacterial virus, Which suggests their common evolutionary origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abad-Zapatero C, Abdel-Meguid SS, Johnson JE, Leslie AGW, Rayment I, Rossmann MG, Suck D, Tsukihara T (1980) Structure of southern bean mosaic virus at 2.8 A resolution. Nature 286: 33–39

    Article  PubMed  CAS  Google Scholar 

  • Acharya R, Fry E, Stuart D, Fox G, Rowlands D, Brown F (1989) The three dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. Nature 337: 709–716

    Article  PubMed  CAS  Google Scholar 

  • Akalu A, Liebermann H, Bauer U, Granzow H, Seidel W (1999) The subgenus-specific C-terminal region of protein IX is located on the surface of the adenovirus capsid. J Virol 73: 6182–6187

    PubMed  CAS  Google Scholar 

  • Anderson CW (1990) The proteinase polypeptide of adenovirus serotype 2 virions. Virology 177: 259–272

    Article  PubMed  CAS  Google Scholar 

  • Arnberg N, Edlund K, Kidd AH, Wadell G (2000) Adenovirus type 37 uses sialic acid as a cellular receptor. J Virol 74: 42–48

    Article  PubMed  CAS  Google Scholar 

  • Athappilly FK, Murali R, RUx JJ, CAI Z, Burnett RM (1994) The refined crystal structure of hexon, the major coat protein of adenovirus type 2, at 2.9 A resolution. J Mol Biol 242: 430–455

    Article  PubMed  CAS  Google Scholar 

  • babiuk LA, tikoo SK (2000) Adenoviruses as vectors for delivering vaccines to mucosal surfaces. J Biotechnol 83: 105–113

    Article  PubMed  CAS  Google Scholar 

  • Bai M, Harfe B, Freimuth P (1993) Mutations that alter an Arg-Gly-Asp (RGD) sequence in the adenovirus type 2 penton base protein abolish its cell-rounding activity and delay virus reproduction in flat cells. J Virol 67: 5198–5205

    PubMed  CAS  Google Scholar 

  • Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294: 93–96

    Article  PubMed  CAS  Google Scholar 

  • Bamford DH, Caldentey J, Bamford Jkh (1995) Bacteriophage PRD1: a broad host range dsDNA tectivirus with an internal membrane. Adv Virus Res 45: 281–319

    Article  PubMed  CAS  Google Scholar 

  • Bamford Dh, Burnett Rm, Stuart DI (2002a) Evolution of viral structure. Theoretical Population Biology 61: 461–470

    Article  PubMed  Google Scholar 

  • Bamford JKH, Bamford DH (2000) A new mutant class, made by targeted muta-genesis, of phage PRD1 reveals that protein P5 connects the receptor binding protein to the vertex. J Virol 74: 7781–7786

    Article  PubMed  CAS  Google Scholar 

  • Bamford JKH, Cockburn JJB, Diprose J, Grimes JM, Sutton G, Stuart DI, Bamford DH (2002b) Diffraction quality crystals of PRD1, a 66-MDa dsDNA virus with an internal membrane. J Struct Biol 139: 103–112

    Article  PubMed  CAS  Google Scholar 

  • Baniecki ML, Mcgrath WJ, Mcwhirter SM, LI C, Toledo DL, Pellicena P, Barnard DL, Thorn KS, Mangel WF (2001) Interaction of the human adenovirus proteinase with its 11-amino acid cofactor pVIc. Biochemistry 40: 12349–12356

    Article  PubMed  CAS  Google Scholar 

  • Baniecki ML, Mcgrath WJ, Dauter Z, Mangel WF (2002) Adenovirus proteinase: crystallization and preliminary X-ray diffraction studies to atomic resolution. Acta Crystallogr D58: 1462–1464

    Google Scholar 

  • Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ, Nusrat A, Parkos CA, Dermody TS (2001) Junction adhesion molecule is a receptor for reovirus. Cell 104: 441–451

    Article  PubMed  CAS  Google Scholar 

  • Baumeister W, Steven AC (2000) Macromolecular electron microscopy in the era of structural genomics. Trends Biochem Sci 25: 624–631

    Article  PubMed  CAS  Google Scholar 

  • Bella J, Kolatkar PR, Marlor CW, Greve JM, Rossmann MG (1998) The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand. Proc Natl Acad Sci USA 95: 4140–4145

    Article  PubMed  CAS  Google Scholar 

  • Belnap DM, Steven AC (2000) `Déjà vu all over again’: the similar structures of bacteriophage PRD1 and adenovirus. Trends Microbio18:91–93

    Google Scholar 

  • Benkö M, Harrach B, Russell WC (2000) Adenoviridae. In: Van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB (eds) Virus Taxonomy. Academic Press, San Diego, pp 227–238

    Google Scholar 

  • Benson SD, Bamford JKH, Bamford DH, Burnett RM (1999) Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. Cell 98: 825–833

    Article  PubMed  CAS  Google Scholar 

  • Benson SD, Bamford JKH, Bamford DH, Burnett RM (2002) The X-ray crystal structure of P3, the major coat protein of the lipid-containing bacteriophage PRD 1, at 1.65 A resolution. Acta Crystallogr D58: 39–59

    Google Scholar 

  • Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horw IT MS, Crowell RL, Finberg RW (1997) Isolation of a Common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275: 1320–1323

    Article  PubMed  CAS  Google Scholar 

  • Bewley MC, Springer K, Zhang Y-B, Freimuth P, Flanagan JM (1999) Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 286: 1579–1583

    Google Scholar 

  • Boulanger PA, Torpier G, Biserte G (1970) Investigation on intranuclear para- crystalline inclusions induced by adenovirus 5 in KB cells. J Gen Virol 6: 329–332

    Article  PubMed  CAS  Google Scholar 

  • Brown DT, Westphal M, Burlingham BT, Winterhoff U, DOERFLER W (1975)

    Google Scholar 

  • Structure and composition of the adenovirus type 2 core. J Virol 16:366–387

    Google Scholar 

  • Burnett RM (1985) The structure of the adenovirus capsid. II. The packing symmetry of hexon and its implications for viral architecture. J Mol Biol 185: 125–143

    Article  PubMed  CAS  Google Scholar 

  • Burnett RM (1997) The structure of adenovirus. In: Chiu W, Burnett RM, Garcea RL (eds) Structural biology of viruses. Oxford University Press, New York, pp 209–238

    Google Scholar 

  • Butcher SJ, Bamford DH, Fuller SD (1995) DNA packaging orders the membrane of bacteriophage PRD1. EMBO J 14: 6078–6086

    CAS  Google Scholar 

  • Caldentey J, Tuma R, Bamford DH (2000) Assembly of bacteriophage PRD1 spike complex: role of the multidomain protein P5. Biochemistry 39: 10566–10573

    Article  PubMed  CAS  Google Scholar 

  • Caldentey J, Blanco L, Bamford DH, Salas M (1993) In vitro replication of bacteriophage PRD1 DNA. Characterization of the protein-primed initiation site. Nucleic Acids Res 21: 3725–3730

    Google Scholar 

  • Caspar Dld, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol 27: 1–24

    Article  Google Scholar 

  • Cerritelli ME, Cheng N, Rosenberg AH, Mcpherson CE, Boom FP, Steven AC (1997) Encapsidated conformation of bacteriophage T7 DNA. Cell 91: 271–280

    Article  PubMed  CAS  Google Scholar 

  • Chappell JD, Prota AE, Dermody TS, Stehle T (2002) Crystal structure of reovirus attachment protein al reveals evolutionary relationship to adenovirus fiber. EMBO J 21: 1–11

    Article  CAS  Google Scholar 

  • Chatterjee PK, Flint SJ (1987) Adenovirus type 2 endopeptidase: an unusual phos- phoprotein enzyme matured by autocatalysis. Proc Natl Acad Sci USA 84: 714–718

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee PK, Vayda ME, Flint SJ (1986) Identification of proteins and protein domains that contact DNA within adenovirus nucleoprotein cores by ultraviolet light crosslinking of oligonucleotides 32P-labelled in vivo. J Mol Biol 188: 23–37

    Article  PubMed  CAS  Google Scholar 

  • Chelvanayagam G, Heringa J, Argos P (1992) Anatomy and evolution of proteins displaying the viral capsid jellyroll topology. J Mol Biol 228: 220–242

    Article  PubMed  CAS  Google Scholar 

  • Chiu CY, Mathias P, Nemerow GR, Stewart PL (1999) Structure of adenovirus complexed with its internalization receptor, a ß,/3 5 integrin. J Virol 73: 6759–6768

    PubMed  CAS  Google Scholar 

  • Chid CY, Wu E, Brown SL, VON Seggern DJ, Nemerow GR, Stewart PL (2001)

    Google Scholar 

  • Structural analysis of a fiber-pseudotyped adenovirus with ocular tropism suggests differential modes of cell receptor interactions. J Virol 75:5375–5380

    Google Scholar 

  • Choi H-K, Tong L, Minor W, Dumas P, Boege U, Rossmann MG, Wengler G (1991) Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Nature 354: 37–43

    Article  PubMed  CAS  Google Scholar 

  • Chroboczek J, Ruigrok RW, Cusack S (1995) Adenovirus fiber. Curr Top Microbiol Immunol 199: 163–200

    Article  PubMed  CAS  Google Scholar 

  • Cohen CJ, Shieh JTC, Pickles RJ, Okegawa T, Hsieh J-T, Bergelson JM (2001) The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA 98: 15191–15196

    Article  PubMed  CAS  Google Scholar 

  • Colby WW, Shenk T (1981) Adenovirus type 5 virions can be assembled in vivo in the absence of detectable polypeptide IX. J Virol 39: 977–980

    PubMed  CAS  Google Scholar 

  • Conway JF, Wikoff WR, Cheng N, Duda RL, Hendrix RW, Johnson JE, Steven AC (2001) Virus maturation involving large subunit rotations and local refolding. Science 292: 744–748

    Article  PubMed  CAS  Google Scholar 

  • Dekker J, Kanellopoulos PN, Van Oosterhout Jawm, Stier G, Tucker PA, Van Der Vliet PC (1998) ATP-independent DNA unwinding by the adenovirus single-stranded DNA binding protein requires a flexible DNA binding loop. J Mol Biol 277: 825–838

    Article  PubMed  CAS  Google Scholar 

  • Dekker J, Kanellopoulos PN, Loonstra AK, VAN Oosterhout Jawm, Leonard K, Tucker PA, VAN Der Vliet PC (1997) Multimerization of the adenovirus DNA-binding protein is the driving force for ATP-independent DNA unwinding during strand displacement synthesis. EMBO J 16: 1455–1463

    Article  CAS  Google Scholar 

  • Devaux C, Timmins PA, Berthet-Colominas C (1983) Structural studies of adenovirus type 2 by neutron and X-ray scattering. J Mol Biol 167: 119–132

    Article  PubMed  CAS  Google Scholar 

  • Ding J, Mcgrath WJ, Sweet RM, Mangel WF (1996) Crystal structure of the human adenovirus proteinase with its 11 amino acid cofactor. EMBO J 15: 1778–1783

    CAS  Google Scholar 

  • Dmitriev IP, Kashentseva EA, Curiel DT (2002) Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J Virol 76: 6893–6899

    Article  PubMed  CAS  Google Scholar 

  • Durmort C, Stehlin C, Schoehn G, Mitraki A, Drouet E, Cusack S, Burmeister WP (2001) Structure of the fiber head of Ad3, a non-CAR-binding serotype of adenovirus. Virology 285: 302–312

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, HARRISON SC (1977) DNA arrangement in isometric phage heads. Nature 268: 598–602

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, KING J, HARRISON SC, EISERLING FA (1978) The structural organization of DNA packaged within the heads of T4 wild-type, isometric and giant bacteriophages. Cell 14: 559–568

    Article  PubMed  CAS  Google Scholar 

  • Everitt E, Lutter L, Philipson L (1975) Structural proteins of adenoviruses. XII. Location and neighbor relationship among proteins of adenovirion type 2 as revealed by enzymatic iodination, immunoprecipitation and chemical cross-linking. Virology 67: 197–208

    Article  PubMed  CAS  Google Scholar 

  • Favier A-L, Schoehn G, Jaquinod M, Harsi C, Chroboczek J (2002) Structural studies of human enteric adenovirus type 41. Virology 293: 75–85

    Article  PubMed  CAS  Google Scholar 

  • Fender P, Ruigrok Rwh, Gout E, Buffet S, Chroboczek J (1997) Adenovirus dodecahedron, a new vector for human gene transfer. Nature Biotechnol 15: 52–56

    Article  CAS  Google Scholar 

  • Furcinitti PS, Van Oostrum J, Burnett RM (1989) Adenovirus polypeptide IX revealed as capsid cement by difference images from electron microscopy and crystallography. EMBO J 8: 3563–3570

    CAS  Google Scholar 

  • Ghosh-Choudhury G, Haj-Ahmad Y, Graham FL (1987) Protein IX, a minor component of the human adenovirus capsid, is essential for the packaging of full length genomes. EMBO J 6: 1733–1739

    CAS  Google Scholar 

  • Grahn AM, Caldentey J, Bamford JKH, Bamford DH (1999) Stable packaging of phage PRD 1 DNA requires adsorption protein P2, which binds to the IncP plasmidencoded conjugative transfer complex. J Bacteriol 181: 6689–6696

    PubMed  CAS  Google Scholar 

  • Greber UF, Webster P, Weber J, Helenius A (1996) The role of the adenovirus protease in virus entry into cells. EMBO J 15: 1766–1777

    CAS  Google Scholar 

  • Green NM, Wrigley NG, Russell WC, Martin SR, Mclachlan AD (1983) Evidence for a repeating cross-/3 sheet structure in the adenovirus fibre. EMBO J 2: 1357–1365

    CAS  Google Scholar 

  • Grimes JM, Jakana J, Ghosh M, Basak AK, Roy P, Chiu W, Stuart DI, Prasad Bvv (1997) An atomic model of the outer layer of the bluetongue virus core derived from X-ray crystallography and electron cryomicroscopy. Structure 5: 885–893

    Article  PubMed  CAS  Google Scholar 

  • Grimes JM, Burroughs JN, Gouet P, Diprose JM, Malby R, ZiéNtara S, Mertens PPC, Stuart DI (1998) The atomic structure of the bluetongue virus core. Nature 395: 470–478

    Article  PubMed  CAS  Google Scholar 

  • Harrison SC, Olson AJ, Schutt CE, Winkler FK, Bricogne G (1978) Tomato bushy stunt virus at 2.9 A resolution. Nature 276: 368–373

    Article  PubMed  CAS  Google Scholar 

  • Hendrix RW (1999) Evolution: the long evolutionary reach of viruses. Curr Biol 9: R914–917

    Article  PubMed  CAS  Google Scholar 

  • Henry CJ, Slifkin M, Merkow LP, Pardo M (1971) The ultrastructure and nature of adenovirus type 2-induced paracrystalline formations. Virology 44: 215–218

    Article  PubMed  CAS  Google Scholar 

  • Henry LJ, XIA D, Wilke ME, Deisenhofer J, Gerard RD (1994) Characterization of the knob domain of the adenovirus type 5 fiber protein expressed in Escherichia coli. J Virol 68: 5239–5246

    PubMed  CAS  Google Scholar 

  • Hess M, Cuzange A, Ruigrok RWH, Chroboczek J, Jacrot B (1995) The avian adenovirus penton: two fibres and one base. J Mol Biol 252: 379–385

    Article  PubMed  CAS  Google Scholar 

  • Horne RW, Brenner S, Waterson AP, Wildy P (1959) The icosahedral form of an adenovirus. J Mol Biol 1: 84–86

    Article  CAS  Google Scholar 

  • Hosokawa K, Sung MT (1976) Isolation and characterization of an extremely basic protein from adenovirus type 5. J Virol 17: 924–934

    PubMed  CAS  Google Scholar 

  • Imler J-L (1995) Adenovirus vectors as recombinant viral vaccines. Vaccine 13: 11431151

    Google Scholar 

  • Jackson T, Sharma A, Ghazaleh RA, Blakemore WE, Ellard FM, Simmons DL, Newman JWI, Stuart DI, King Amq (1997) Arginine-glycine-aspartic acid-specific binding by foot-and-mouth disease viruses to the purified integrin a v ß 3 in vitro. J Virol 71: 8357–8361

    PubMed  CAS  Google Scholar 

  • Kanellopoulos PN, Van Der Zandt H, Tsernoglou D, Van Der Vliet PC, Tucker PA (1995) Crystallization and preliminary X-ray crystallographic studies on the adenovirus ssDNA binding protein in complex with ssDNA. J Struct Biol 115: 113–116

    Article  PubMed  CAS  Google Scholar 

  • Kanellopoulos PN, Tsernoglou D, Van Der Vliet PC, Tucker PA (1996) Alternative arrangements of the protein chain are possible for the adenovirus single-stranded DNA binding protein. J Mol Biol 257: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Kidd AH, Chroboczek J, Cusack S, Ruigrok RWH (1993) Adenovirus type 40 virions contain two distinct fibers. Virology 192: 73–84

    Article  PubMed  CAS  Google Scholar 

  • Kindt J, Tzlil S, Ben-Shaul A, Gelbart WM (2001) DNA packaging and ejection forces in bacteriophage. Proc Natl Acad Sci USA 98: 13671–13674.

    Article  PubMed  CAS  Google Scholar 

  • King AJ, Van Der Vliet PC (1994) A precursor terminal protein-trinucleotide intermediate during initiation of adenovirus DNA replication: regeneration of molecular ends in vitro by a jumping back mechanism. EMBO J 13: 5786–5792

    CAS  Google Scholar 

  • Klein H, Maltzman W, Levine Al (1979) Structure-function relationships of the adenovirus DNA-binding protein. J Biol Chem 254: 11051–11060

    PubMed  CAS  Google Scholar 

  • Kraulis PJ (1991) Molscript: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24: 946–950

    Article  Google Scholar 

  • Kuhn RJ, Zhang W, Rossmann MG, Pletnev SV, Corver J, Lenches E, Jones CT, Mukhopadhyay S, Chipman PR, Strauss EG, Baker TS, Strauss JH (2002)

    Google Scholar 

  • Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell 108:717–725

    Google Scholar 

  • Laver WG, Wrigley NG, Pereira HG (1969) Removal of pentons from particles of adenovirus type 2. Virology 39: 599–605

    Article  PubMed  CAS  Google Scholar 

  • LI P, Bellett AJD, Parish CR (1984) Structural organization and polypeptide composition of the avian adenovirus core. J Virol 52: 638–649

    PubMed  CAS  Google Scholar 

  • Linne T, Philipson L (1980) Further characterization of the phosphate moiety of the adenovirus type 2 DNA-binding protein. Eur J Biochem 103: 259–270

    Article  PubMed  CAS  Google Scholar 

  • Louis N, Fender P, BARGE A, Kitts P, CHROBOCZEK J (1994) Cell-binding domain of adenovirus serotype 2 fiber. J Virol 68: 4104–4106

    PubMed  CAS  Google Scholar 

  • Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252: 1162–1164

    Article  CAS  Google Scholar 

  • Lutz P, Rosa-Calatrava M, Kedinger C (1997) The product of the adenovirus intermediate gene IX is a transcriptional activator. J Virol 71: 5102–5109

    PubMed  CAS  Google Scholar 

  • Maizel JV, Jr, White DO, Scharff MD (1968) The polypeptides of adenovirus. I. Evidence for multiple protein components in the virion and a comparison of types 2, 7A, and 12. Virology 36: 115–125

    CAS  Google Scholar 

  • Mancini EJ, Clarke M, Gowen BE, Rutten T, Fuller SD (2000) Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki Forest virus. Mol Cell 5: 255–266

    Google Scholar 

  • Mangel WF, Mcgrath WJ, Toledo DL, Anderson CW (1993) Viral DNA and a viral peptide can act as cofactors of adenovirus virion proteinase activity. Nature 361: 274–275

    Article  PubMed  CAS  Google Scholar 

  • Mangel WF, Toledo DL, Brown MT, Martin JH, Mcgrath WJ (1996) Characterization of three components of human adenovirus proteinase activity in vitro. J Biol Chem 271: 536–543

    Article  PubMed  CAS  Google Scholar 

  • Mathias P, Wickham T, Moore M, Nemerow G (1994) Multiple adenovirus serotypes use av integrins for infection. J Virol 68: 6811–6814

    PubMed  CAS  Google Scholar 

  • Matthews DA, Russell WC (1995) Adenovirus protein-protein interactions: molecular parameters governing the binding of protein VI to hexon and the activation of the adenovirus 23 K protease. J Gen Virol 76: 1959–1969

    Article  PubMed  CAS  Google Scholar 

  • Mcgrath WJ, Ding J, Sweet RM, Mangel WF (1996) Preparation and crystallization of a complex between human adenovirus serotype 2 proteinase and its 11-aminoacid cofactor pVIc. J Struct Biol 117: 77–79

    Article  PubMed  CAS  Google Scholar 

  • Mirza MA, Weber J (1982) Structure of adenovirus chromatin. Biochim Biophys Acta 696: 76–86

    Article  PubMed  CAS  Google Scholar 

  • Mitraki A, Barge A, Chroboczek J,Andrieu J-P, GAGNON J, RUIGROK RWH (1999) Unfolding studies of human adenovirus type 2 fibre trimers. Evidence for a stable domain. Eur J Biochem 264: 599–606

    Google Scholar 

  • Morin N, Delsert C, Klessig DF (1989) Nuclear localization of the adenovirus DNA-binding protein: requirement for two signals and complementation during viral infection. Mol Cell Biol 9: 4372–4380

    PubMed  CAS  Google Scholar 

  • Nemerow GR, Stewart PL (1999) Role of a, integrins in adenovirus cell entry and gene delivery. Microbiol Mol Biol Rev 63: 725–734

    PubMed  CAS  Google Scholar 

  • Newcomb WW, Boring JW, Brown JC (1984) Ion etching of human adenovirus 2: structure of the core. J Virol 51: 52–56

    PubMed  CAS  Google Scholar 

  • Pereira HG, Wrigley NG (1974) In vitro reconstruction, hexon bonding and handedness of incomplete adenovirus capsid. J Mol Biol 85:617–631

    Google Scholar 

  • Petterson U (1984) Structural and nonstructural adenovirus proteins. In: Ginsberg HS (ed) The Adenoviruses. Plenum Press, New York, pp 35–125

    Google Scholar 

  • Polgar L (1974) Mercaptide-imidazolium ion-pair: the reactive nucleophile in papain catalysis. FEBS Lett 47: 15–18

    Article  PubMed  CAS  Google Scholar 

  • Prage L, Pettersson U, Hoglund S, Lonberg-Holm K, Philipson L (1970) Structural proteins of adenoviruses. IV. Sequential degradation of the adenovirus type 2 virion. Virology 42: 341–358

    Article  PubMed  CAS  Google Scholar 

  • Ramachandra M, Padmanabhan R (1999) Adenovirus DNA replication. In: Seth P (ed) Adenoviruses: basic biology to gene therapy. RG Landes, Austin, Tex, USA, pp 59–68

    Google Scholar 

  • Reinisch KM, Nibert ML, Harrison SC (2000) Structure of the reovirus core at 3.6 A resolution. Nature 404: 960–967

    Article  PubMed  CAS  Google Scholar 

  • Rekosh DM, Russell WC, Bellet AJ, Robinson AJ (1977) Identification of a protein linked to the ends of adenovirus DNA. Cell 11: 283–295

    Article  PubMed  CAS  Google Scholar 

  • Roelvink PW, Lizonova A, Lee Jgm, LI Y, Bergelson JM, Finberg RW, BROUGH DE, Kovesdi I, Wickham TJ (1998) The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol 72: 7909–7915

    Google Scholar 

  • Rosa-Calatrava M, Grave L, Puvion-Dutilleul F, Chatton B, Kedinger C (2001) Functional analysis of adenovirus protein IX identifies domains involved in capsid stability, transcriptional activity, and nuclear reorganization. J Virol 75: 7131–7141

    Article  PubMed  CAS  Google Scholar 

  • Rowe WP, Huebner RJ, Gillmore LK, Parrott RH, Ward TG (1953) Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med 84: 570–573

    PubMed  CAS  Google Scholar 

  • Ruigrok Rwh, SchüLler S (1993) Liquid crystalline DNA in fowl adenovirus. J Struct Biol 110: 177–179

    Article  Google Scholar 

  • Ruigrok Rwh, Barge A, Albiges-Rizo C, Dayan S (1990) Structure of adenovirus fibre. II. Morphology of single fibres. J Mol Biol 215: 589–596

    Google Scholar 

  • Ruigrok Rwh, Barge A, Mittal SK, Jacrot B (1994) The fibre of bovine adenovirus type 3 is very long but bent. J Gen Virol 75: 2069–2073

    Article  Google Scholar 

  • Russell WC (2000) Update on adenovirus and its vectors. J Gen Virol 81: 2573–2604

    PubMed  CAS  Google Scholar 

  • Rux JJ, Burnett RM (2000) Type-specific epitope locations revealed by X-ray crystallographic study of adenovirus type 5 hexon. Mol Ther 1: 18–30

    Article  PubMed  CAS  Google Scholar 

  • Rydman PS, Caldentey J, Butcher SI, Fuller SD, Rutten T, Bamford DH (1999)

    Google Scholar 

  • Bacteriophage PRD1 contains a labile receptor-binding structure at each vertex. J Mol Biol 291:575–587

    Google Scholar 

  • Rydman PS, Bamford JKH, Bamford DH (2001) A minor capsid protein P30 is essential for bacteriophage PRD1 capsid assembly. J Mol Biol 313: 785–795

    Article  PubMed  CAS  Google Scholar 

  • San Martín C, Huiskonen JT, Bamford JKH, Butcher SJ, Fuller SD, Bamford DH, Burnett RM (2002) Minor proteins, mobile arms, and membrane-capsid interactions in the bacteriophage PRD1 capsid. Nature Struct Biol 9: 756–762

    Article  CAS  Google Scholar 

  • San MartÍn C, Burnett RM, DE Haas F, Heinkel R, Rutten T, Fuller SD,Butcher SJ, Bamford DH (2001) Combined EM/X-ray imaging yields a quasi-atomic model of the adenovirus-related bacteriophage PRD1 and shows key capsid and membrane interactions. Structure 9: 917–930

    Google Scholar 

  • Schechter NM, Davies W, Anderson CW (1980) Adenovirus coded deoxyribonucleic acid binding protein. Isolation, physical properties, and effects of proteolytic digestion. Biochemistry 19: 2802–2810

    Google Scholar 

  • Schoehn G, Fender P, Chroboczek J, Hewat EA (1996) Adenovirus 3 penton dodecahedron exhibits structural changes of the base on fibre binding.EMBO J 15: 6841–6846

    Google Scholar 

  • Seki T, Dmitriev I, Kashentseva E, Takayama K, ROTS M, Suzuki K, Curiel DT (2002) Artificial extension of the adenovirus fiber shaft inhibits infectivity in coxsackievirus and adenovirus receptor-positive cell lines. J Virol 76: 1100–1108.

    Article  PubMed  CAS  Google Scholar 

  • Shayakhmetov DM, Lieber A (2000) Dependence of adenovirus infectivity on length of the fiber shaft domain. J Viro! 74: 10274–10286

    Article  CAS  Google Scholar 

  • Shiver JW, FU T-M, Chen L, Casimiro DR, Davies M-E, Evans RK, Zhang Z-Q, Simon AJ, Trigona WL, Dubey SA, Huang L, Harris VA, Long RS, Liang X, Handt L, Schleif WA, Zhu L, Freed DC, Persaud NV, Guan L, Punt KS, Tang A, Chen M, Wilson KA, Collins KB, Heidecker GJ, Fernandez VR, Perry HC, Joyce JG, Grimm KM, Cook JC, Keller PM, Kresock DS, Mach H, Troutman RD, Isopi LA, Williams DM, XU Z, Bohannon KE, Volkin DB, Montefiori DC, Miura A, Krivulka GR, Lifton MA, Kuroda MJ, Schmitz JE, Letvin NL, Caulfield MJ, Bett AJ, Youil R, Kaslow DC, Emini EA (2002) Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiencyvirus immunity. Nature 415: 331–335

    Article  PubMed  CAS  Google Scholar 

  • Shortridge KF, Biddle F (1970) The proteins of adenovirus type 5. Arch Gesamte Virusforsch 29: 1–24

    Article  PubMed  CAS  Google Scholar 

  • Signas C, Akusjärvi G, Pettersson U (1985) Adenovirus 3 fiber polypeptide gene: implications for the structure of the fiber protein. J Virol 53: 672–678.

    PubMed  CAS  Google Scholar 

  • Smith KO, Gehle WD, Trousdale MD (1965) Architecture of the adenovirus capsid. J Bacteriol 90: 254–261

    PubMed  CAS  Google Scholar 

  • Stevens RC, Yokoyama S, Wilson IA (2001) Global efforts in structural genomics. Science 294: 89–92

    Article  PubMed  CAS  Google Scholar 

  • Stewart PL, Burnett RM (1993) Adenovirus structure as revealed by X-ray crystallography, electron microscopy, and difference imaging. Jpn J Appl Phys 32: 1342 1347

    Google Scholar 

  • Stewart PL, Burnett RM (1995) Adenovirus structure by X-ray crystallography and electron microscopy. Curr Top Microbiol Immunol 199: 25–38

    Article  PubMed  Google Scholar 

  • Stewart PL, Burnett RM, Cyrklaff M, Fuller SD (1991) Image reconstruction reveals the complex molecular organization of adenovirus. Cell 67: 145–154

    Article  PubMed  CAS  Google Scholar 

  • Stewart PL, Fuller SD, Burnett RM (1993) Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. EMBO J 12: 2589–2599

    CAS  Google Scholar 

  • Stewart PL, Chiu CY, Huang S, Muir T, Zhao Y, Chait B, Mathias P, Nemerow GR (1997) Cryo-EM visualization of an exposed RGD epitope on adenovirus that escapes antibody neutralization. EMBO J 16: 1189–1198

    Article  CAS  Google Scholar 

  • Stouten PFW, Sander C, Ruigrok RWH, Cusack S (1992) New triple-helical model for the shaft of the adenovirus fibre. J Mol Biol 226: 1073–1084

    Article  PubMed  CAS  Google Scholar 

  • Sussenbach JS (1984) The structure of the genome. In: Ginsberg HS (ed) The Adenoviruses. Plenum Press, New York, pp 35–125

    Chapter  Google Scholar 

  • Tate VE, Philipson L (1979) Parental adenovirus DNA accumulates in nucleosomelike structures in infected cells. Nucleic Acids Res 6: 2769–2785

    Article  PubMed  CAS  Google Scholar 

  • Toogood CIA, Crompton J, Hay RT (1992) Antipeptide antisera define neutralizing epitopes on the adenovirus hexon. J Gen Virol 73: 1429–1435

    Article  PubMed  CAS  Google Scholar 

  • Trotman LC, Mosberger N, Fornerod M, Stidwill RP, Greber OF (2001) Import of adenovirus DNA involves the nuclear pore complex receptor CAN/Nup214 and histone H1. Nat Cell Biol 3: 1092–1100.

    Article  PubMed  CAS  Google Scholar 

  • Tsernoglou D, Tucker AD, Van der Vliet PC (1984) Crystallization of a fragment of the adenovirus DNA binding protein. J Mol Biol 172: 237–239

    Article  PubMed  CAS  Google Scholar 

  • Tsernoglou D, Tsugita A, Tucker AD, Van Der Vliet PC (1985) Characterization of the chymotryptic core of the adenovirus DNA-binding protein. FEBS Lett 188: 248–252

    Article  PubMed  CAS  Google Scholar 

  • Tucker PA, Tsernoglou D, Tucker AD, Coenjaerts FEJ, Leenders H, Van Der Vliet PC (1994) Crystal structure of the adenovirus DNA binding protein reveals a hook-on model for cooperative DNA binding. EMBO J 13: 2994–3002

    CAS  Google Scholar 

  • Van Der Vliet PC, Keegstra W, Jansz HS (1978) Complex formation between the adenovirus type 5 DNA-binding protein and single-stranded DNA. Eur J Biochem 86: 389–398

    Article  PubMed  Google Scholar 

  • VAN Oostrum J, Burnett RM (1985) Molecular composition of the adenovirus type 2 virion. J Virol 56: 439–448

    PubMed  Google Scholar 

  • VAN Raaij MJ, Louis N, Chroboczek J, Cusack S (1999a) Structure of the human adenovirus serotype 2 fiber head domain at 1.5 A resolution. Virology 262: 333343

    Google Scholar 

  • VAN Raaij MJ, Mitraki A, Lavigne G, Cusack S (1999b) A triple /3-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 401: 935–938

    Article  PubMed  CAS  Google Scholar 

  • Vayda ME, Flint SJ (1987) Isolation and characterization of adenovirus core nucleoprotein subunits. J Virol 61: 3335–3339

    PubMed  CAS  Google Scholar 

  • Vayda ME, Rogers AE, Flint SJ (1983) The structure of nucleoprotein cores released from adenovirions. Nucleic Acids Res 11: 441–460

    Article  PubMed  CAS  Google Scholar 

  • Verdaguer N, Mateu MG,Andreu D, Giralt E, Domingo E, Fita I (1995) Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. EMBO J 14: 1690–1696

    CAS  Google Scholar 

  • Von Seggern DJ, Chiu CY, Fleck SK, Stewart PL, Nemerow GR (1999) A helperindependent adenovirus vector with El, E3, and fiber deleted: structure and infectivity of fiberless particles. J Virol 73: 1601–1608

    Google Scholar 

  • Vos HL, Brough DE, Van Der Lee FM, Hoeben RC, Verheijden GFM, Dooijes D, Klessig DF, Sussenbach JS (1989) Characterization of adenovirus type 5 insertion and deletion mutants encoding altered DNA binding proteins. Virology 172: 634–642

    Article  PubMed  CAS  Google Scholar 

  • Ward P, Dean FB, O’donnell ME, Berns KI (1998) Role of the adenovirus DNA-binding protein in in vitro adeno-associated virus DNA replication. J Virol 72: 420–427

    PubMed  CAS  Google Scholar 

  • Weber JM (1995) Adenovirus endopeptidase and its role in virus infection. Curr Top Microbiol Immunol 199: 227–235

    Article  PubMed  CAS  Google Scholar 

  • Weber JM (1999) Role of endoprotease in adenovirus infection. In: Seth P (ed) Adeno- viruses: basic biology to gene therapy. RG Landes, Austin, Tex, USA, pp 79–83

    Google Scholar 

  • Wickham TJ, Mathias P, Cheresh DA, Nemerow GR (1993) Integrins av133 and avß5 promote adenovirus internalization but not virus attachment. Cell 73: 309–319

    Article  PubMed  CAS  Google Scholar 

  • Wickham TJ, FíLardo EJ, Cheresh DA, Nemerow GR (1994) Integrin avß5 selectively promotes adenovirus mediated cell membrane permeabilization. J Cell Biol 127: 257–264

    Article  PubMed  CAS  Google Scholar 

  • Wong M-L, Hsu M-T (1989) Linear adenovirus DNA is organized into supercoiled domains in virus particles. Nucleic Acids Res 17: 3535–3550

    Article  PubMed  CAS  Google Scholar 

  • Wu E, Fernandez J, Fleck SK, VON Seggern DJ, Huang S, Nemerow GR (2001) A 50-kDa membrane protein mediates sialic acid-independent binding and infection of conjunctival cells by adenovirus type 37. Virology 279: 78–89

    Article  PubMed  CAS  Google Scholar 

  • XIA D, Henry LJ, Gerard RD, Deisenhofer J (1994) Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7 A resolution. Structure 2: 1259–1270

    Article  PubMed  CAS  Google Scholar 

  • Xiong J-P, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL,Arnaout MA (2002) Crystal Structure of the Extracellular Segment of Integrin aVß3 in Complex with an Arg-Gly-Asp Ligand. Science 296: 151–155

    CAS  Google Scholar 

  • Zhang Z, Greene B, Thuman-Commike PA, Jakana J, Prevelige PE, Jr, King J, Chid W (2000) Visualization of the maturation transition in bacteriophage P22 by electron cryomicroscopy. J Mol Biol 297: 615–626

    Article  PubMed  CAS  Google Scholar 

  • Zhou ZH, Chen DH, Jakana J, Rixon FJ, Chiu W (1999) Visualization of tegumentcapsid interactions and DNA in intact herpes simplex virus type 1 virions. J Virol 73: 3210–3218

    PubMed  CAS  Google Scholar 

  • Zhou ZH, Dougherty M, Jakana J, HE J, Rixon FJ, Chiu W (2000) Seeing the herpesvirus capsid at 8.5 A. Science 288: 877–880

    Article  PubMed  CAS  Google Scholar 

  • Zhou ZH, Baker ML, Jiang W, Dougherty M, Jakana J, Dong G, Lu G, Chiu W (2001) Electron cryomicroscopy and bioinformatics suggest protein fold models for rice dwarf virus. Nat Struct Biol 8: 868–873

    Article  PubMed  CAS  Google Scholar 

  • Zijderveld DC, Van Der Vliet PC (1994) Helix-destabilizing properties of the adenovirus DNA-binding protein. J Virol 68: 1158–1164

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martín, C.S., Burnett, R.M. (2003). Structural Studies on Adenoviruses. In: Doerfler, W., Böhm, P. (eds) Adenoviruses: Model and Vectors in Virus-Host Interactions. Current Topics in Microbiology and Immunology, vol 272. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05597-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05597-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05517-1

  • Online ISBN: 978-3-662-05597-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics