Skip to main content
  • 339 Accesses

Abstract

Mg2+ is a vital constituent of living things. Once considered a trace mineral it is now recognised as a major cellular component being the second most abundant intracellular cation in mammalian tissue (Walser 1967; Wacker 1980). Beneficial and medicinal uses of Mg2+ salts have been described since the sixteenth century (Aikawa 1963; Wacker 1980) and there have been many studies revealing the importance of Mg2+ in animal and human health (Wacker 1980; Smetana 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aikawa JK (1963) The role of magnesium in biologic processes. Charles C Thomas, Springfield

    Google Scholar 

  • Altura BT, Altura BM (1997) Ionized magnesium measurements in serum, plasma and whole blood in health and disease. In: Smetana R (ed) Advances in magnesium research: 1. Magnesium in cardiology. John Libbey, London, pp 538–546

    Google Scholar 

  • Barbul A, Zipser Y, Nachles A, Korenstein R (1999) Deoxygenation and elevation of intracellular magnesium induce tyrosine phosphorylation of band 3 in human erythrocytes. FEBS Letters 455:87–91

    Article  Google Scholar 

  • Bernstein RE (1959) Alterations in metabolic energetics and cation transport during aging of red cells. J Clin Invest 38:1572–1586

    Article  Google Scholar 

  • Beyenbach KW (2000) Renal handling of magnesium in fish: from whole animal to brush border membrane vesicles. Front Biosci 5:d712-d719

    Article  Google Scholar 

  • Bock JL, Yusuf Y (1988) Further studies on alterations in magnesium binding during cold storage of erythrocytes. Biochim Biophys Acta 941:225–231

    Article  Google Scholar 

  • Bock JL, Wenz B, Gupta RK (1985) Changes in intracellular Mg adenosine triphosphate and ionized Mg2+ during blood storage: detection by 31P nuclear magnetic resonance spectroscopy. Blood 65:1526–1530

    Google Scholar 

  • Bookchin RM, Ortiz OE, Lew VL (1987) Red cell magnesium content and permeability in sickle cell anemia. Clin Res 35:651 A

    Google Scholar 

  • Bunn HF, Ransil BJ, Chao A (1971) The interaction between erythrocyte organic phosphates, magnesium ion, and hemoglobin. J Biol Chem 246:5273–5279

    Google Scholar 

  • Büttner S, Günther T, Schäfer A, Vormann J (1998a) Magnesium metabolism in erythrocytes of various species. Magnes — Bull 20:101–109

    Google Scholar 

  • Büttner S, Günther T, Vormann J (1998b) Reversible inactivation of Na+/Mg2+ antiport in rat erythrocytes by glucose starvation. Magnes — Bull 20:11–14

    Google Scholar 

  • Campbell EH, Gibson JS (1998) Oxygen-dependent K+ fluxes in sheep red cells. J Physiol 506:679–688

    Article  Google Scholar 

  • Campbell EH, Cossins AR, Gibson JS (1999) Oxygen-dependent K+ influxes in Mg2+-clamped equine red blood cells. J Physiol 515:431–437

    Article  Google Scholar 

  • Charbon GA, Hoekstra MH (1962) Mineral content in plasma and blood cells of various species. Acta Physiol Pharmacol Neerlandica 10:209–214

    Google Scholar 

  • Clark MR (1988) Senescence of red cells: progress and problems. Physiol Rev 68:503–554

    Google Scholar 

  • Desai SA, Schlesinger PH, Krogstad DJ (1991) Physiologic rate of carrier-mediated Ca2+ entry matches active extrusion in human erythrocytes. J Gen Physiol 98:349–364

    Article  Google Scholar 

  • DiPolo R, Beaugé L (1988) An ATP-dependent Na7Mg2+ countertransport is the only mechanism for Mg extrusion in squid axons. Biochim Biophys Acta 946:424–428

    Article  Google Scholar 

  • Dunn MJ (1974) Red blood cell calcium and magnesium: effects upon sodium and potassium transport and cellular morphology. Biochim Biophys Acta 352:97–116

    Article  MathSciNet  Google Scholar 

  • Ebel H, Günther T (1999) Characterization of Mg2+ efflux from rat erythrocytes non-loaded with Mg2+. Biochim Biophys Acta 1421:353–360

    Article  Google Scholar 

  • Ebel H, Hollstein M, Günther T (2002) Role of the choline exchanger in Na+-independent Mg2+ efflux from rat erythrocytes. Biochim Biophys Acta 1559:135–144

    Article  Google Scholar 

  • Elin RJ (1997) Evaluating the role of ionized magnesium in laboratory and clinical practice. In: Smetana R (ed) Advances in magnesium research: 1. Magnesium in cardiology. John Libbey, London, pp 525–531

    Google Scholar 

  • Ferreira HG, Lew VL (1977) Passive Ca transport and cytoplasmic Ca buffering in intact red cells. In: Ellory JC, Lew VL (eds) Membrane transport in red cells. Academic, London, pp 53–91

    Google Scholar 

  • Féray JC, Franck G, Garay R, Henrotte JG (1989) Inter-individual differences in red cell Mg2+ contents are related to the activity of a Na+:Mg2+ exchanger. Possible relationship with HLA-associated genetic factors. Magnes Res 2:124

    Google Scholar 

  • Féray JC, Garay R (1986) An Na+-stimulated Mg2+-transport system in human red blood cells. Biochim Biophys Acta 856:76–84

    Article  Google Scholar 

  • Féray JC, Garay R (1987) A one-to-one Mg2+:Mn2+ exchange in rat erythrocytes. J Biol Chem 262:5763–5768

    Google Scholar 

  • Féray JC, Garay R (1988) Demonstration of a Na+ : Mg2+ exchange in human red cells by its sensitivity to tricyclic antidepressant drugs. Naunyn-Schmiedebergs Arch Pharmacol 338:332–337

    Google Scholar 

  • Flatman PW (1980) The effect of buffer composition and deoxygenation on the concentration of ionized magnesium inside human red blood cells. J Physiol 300:19–30

    Google Scholar 

  • Flatman PW (1987) The effects of calcium on potassium transport in ferret red cells. J Physiol 386:407–423

    Google Scholar 

  • Flatman PW (1991a) Mechanisms of magnesium transport. Annu Rev Physiol 53:259–271

    Article  Google Scholar 

  • Flatman PW (1991b) The effects of metabolism on Na+-K+-Cl- co-transport in ferret red cells. J Physiol 437:495–510

    Google Scholar 

  • Flatman PW (1993) The role of magnesium in regulating ion transport. In: Birch NJ (ed) Magnesium and the cell. Academic Press, London, pp 197–216

    Google Scholar 

  • Flatman PW, Andrews PLR (1983) Cation and ATP content of ferret red cells. Comp Biochem Physiol 74A:939–943

    Article  Google Scholar 

  • Flatman P, Lew VL (1977) Use of ionophore A23187 to measure and to control free and bound cytoplasmic Mg in intact red cells. Nature 267:360–362

    Article  ADS  Google Scholar 

  • Flatman PW, Lew VL (1980) Magnesium buffering in intact human red blood cells measured using the ionophore A23177. J Physiol 305:13–30

    Google Scholar 

  • Flatman PW, Smith LM (1990) Magnesium transport in ferret red cells. J Physiol 431:11–25

    Google Scholar 

  • Flatman PW, Smith LM (1991) Sodium-dependent magnesium uptake by ferret red cells. J Physiol 443:217–230

    Google Scholar 

  • Flatman PW, Smith LM (1996) Magnesium transport in magnesium-loaded ferret red blood cells. Pflügers Arch 432:995–1002

    Article  Google Scholar 

  • Franck G, Wdzieczak-Bakala J, Henrotte JG (1999) Modulating role of glucose on magnesium transport in rat erythrocytes. J Nutr Biochem 10:433–437

    Article  Google Scholar 

  • Frenkel EJ, Graziani M, Schatzmann HJ (1989) ATP requirement of the sodium-dependent magnesium extrusion from human red blood cells. J Physiol 414:385–397

    Google Scholar 

  • Gerber G, Berger H, Jänig GR, Rapoport SM (1973) Interaction of haemoglobin with ions. Quantitative description of the state of magnesium, adenosine 5’-triphosphate, 2,3-bisphosphoglycerate, and human haemoglobin under simulated intracellular conditions. Eur J Biochem 38:563–571

    Article  Google Scholar 

  • Geven WB, Vogels-Mentink GM, Willems JL, Van Os CH, Hilbers CW, Joordens JJM, Rijksen G, Monnens LAH (1991) 31P Nuclear magnetic resonance and zero-point titration compared for measurement of free magnesium concentration in erythrocytes. Clin Chem 37:2076–2080

    Google Scholar 

  • Ginsburg S, Smith JG, Ginsburg FM, Reardon JZ, Aikawa JK (1962) Magnesium metabolism of human and rabbit erythrocytes. Blood 20:722–729

    Google Scholar 

  • Graschopf A, Stadler JA, Hoellerer MK, Eder S, Sieghardt M, Kohlwein SD, Schweyen RJ (2001) The yeast plasma membrane protein Alrl controls Mg2+ homeostasis and is subject to Mg2+-dependent control of its synthesis and degradation. J Biol Chem 276:16216–16222

    Article  Google Scholar 

  • Gupta RK, Beno vie JL, Rose ZB (1978) The determination of the free magnesium level in the human red blood cell by 31P NMR. J Biol Chem 253:6172–6176

    Google Scholar 

  • Günther T, Vormann J (1985a) Mg2+ efflux is accomplished by an amiloride-sensitive Na+/Mg2+ antiport. Biochem Biophys Res Commun 130:540–545

    Article  Google Scholar 

  • Günther T, Vormann J (1985b) Removal and reuptake of intracellular magnesium. Magnes — Bull 7:66–69

    Google Scholar 

  • Günther T, Vormann J (1986) Probable role of protein phosphorylation in the regulation of Mg2+ efflux via Na7Mg2+ antiport. Magnes — Bull 8:307–309

    Google Scholar 

  • Günther T, Vormann J (1987) Characterization of Na+/Mg2+ antiport by simultaneous 28Mg2+ influx. Biochem Biophys Res Commun 148:1069–1074

    Article  Google Scholar 

  • Günther T, Vormann J (1989a) Characterization of Mg2+ efflux from human, rat and chicken erythrocytes. FEBS Letters 250:633–637

    Article  Google Scholar 

  • Günther T, Vormann J (1989b) Na+-independent Mg2+ efflux from Mg2+-loaded human erythrocytes. FEBS Letters 247:181–184

    Article  Google Scholar 

  • Günther T, Vormann J (1990) Characterization of Na+-independent Mg2+ efflux from erythrocytes. FEBS Letters 271:149–151

    Article  Google Scholar 

  • Günther T, Vormann J (1991) Inhibition of Mg2+ efflux from erythrocytes by serum albumin. Magnes — Bull 13:82–84

    Google Scholar 

  • Günther T, Vormann J (1995) Reversibility of Na+/Mg2+ antiport in rat erythrocytes. Bio-chim Biophys Acta 1234:105–110

    Article  Google Scholar 

  • Günther T, Vormann J, Förster R (1984) Regulation of intracellular magnesium by Mg2+ efflux. Biochem Biophys Res Commun 119:124–131

    Article  Google Scholar 

  • Günther T, Vormann J, Cragoe EJ, Höllriegl V (1989) Characterization of Na+-dependent and Na+-independent Mg2+ efflux from erythrocytes by amiloride derivatives. Magnes Bull 11:103–107

    Google Scholar 

  • Günther T, Vormann J, Cragoe EJ (1990a) Species-specific Mn2+/Mg2+ antiport from Mg2+-loaded erythrocytes. FEBS Letters 261:47–51

    Article  Google Scholar 

  • Günther T, Vormann J, Höllriegl V (1990b) Characterization of Na+-dependent Mg2+ efflux from Mg2+-loaded rat erythrocytes. Biochim Biophys Acta 1023:455–461

    Article  Google Scholar 

  • Günther T, Vormann J, Höllriegl V (1990c) Concentration of intracellular free Mg2+ and Mg2+ efflux from magnesium-deficient erythrocytes. Magnes — Bull 12:43–46

    Google Scholar 

  • Halperin JA, Brugnara C, Tosteson MT, Ha TV, Tosteson DC (1989) Voltage-activated cation transport in human erythrocytes. Am J Physiol 257:C986–C996

    Google Scholar 

  • Heaton FW (1967) The determination of ionized magnesium in serum and urine. Clin Chim Acta 15:139–144

    Article  Google Scholar 

  • Henrotte JG (1993) Genetic regulation of cellular magnesium content. In: Birch NJ (ed) Magnesium and the cell. Academic Press, London, pp 177–195

    Google Scholar 

  • Henrotte JG, Franck G (1990) Plasma factor(s) inhibiting cell magnesium efflux rapidly determined with a biological assay. Clin Chem 36:1859–1860

    Google Scholar 

  • Henrotte JG, Pia M, Dausset J (1990) HLA- and H-2-associated variations of intra- and extracellular magnesium content. Proc Natl Acad Sci USA 87:1894–1898

    Article  ADS  Google Scholar 

  • Henrotte JG, Santarromana M, Féray JC, Franck G, Garay R (1997) Increased Mn2+ and decreased Mg2+ efflux from rat erythrocytes by plasma. In: Smetana R (ed) Advances in magnesium research: 1. Magnesium in cardiology. John Libbey, London, pp 514–517

    Google Scholar 

  • Jelicks LA, Weaver J, Pollack S, Gupta RK (1989) NMR studies of intracellular free calcium, free magnesium and sodium in the guinea pig reticulocyte and mature red cell. Biochim Biophys Acta 1012:261–266

    Article  Google Scholar 

  • Jennings ML, Schulz RK (1990) Swelling-activated KCl cotransport in rabbit red cells: flux is determined mainly by cell volume rather than shape. Am J Physiol 259:C960–C967

    Google Scholar 

  • Joiner CH, Jiang M, Fathallah H, Giraud F, Franco RS (1998) Deoxygenation of sickle red blood cells stimulates KCl cotransport without affecting Na7H+ exchange. Am J Physiol 274:C1466-C1475

    Google Scholar 

  • Kaestner L, Christophersen P, Bernhardt I, Bennekou P (2000) The non-selective voltage-activated cation channel in the human red blood cell membrane: reconciliation between two conflicting reports and further characterisation. Bioelectrochem 52:117–125

    Article  Google Scholar 

  • Lew VL, Beaugé L (1979) Passive cation fluxes in red cell membranes. In: Giebisch G, Tosteson DC, Ussing HH (eds) Membrane transport in biology, vol. 2. Transport across single biological membranes. Springer, Berlin, pp 81–115

    Chapter  Google Scholar 

  • Lüdi H, Schatzmann HJ (1987) Some properties of a system for sodium-dependent outward movement of magnesium from metabolizing human red blood cells. J Physiol 390:367–382

    Google Scholar 

  • Macey RI, Adorante JS, Orme FW (1978) Erythrocyte membrane potentials determined by hydrogen ion distribution. Biochim Biophys Acta 512:284–295

    Article  Google Scholar 

  • Mairbäurl H, Hoffman JF (1992) Internal magnesium, 2,3-diphosphoglycerate, and the regulation of the steady-state volume of human red blood cells by the Na/K/2Cl co-transport system. J Gen Physiol 99:721–746

    Article  Google Scholar 

  • Malon A, Wagner B, Bulska E, Maj-Zurawska M (2002) Comparison of the Potentiometric, 31P NMR, and zero-point titration methods of determining ionized magnesium in erythrocytes. Anal Biochem 302:220–223

    Article  Google Scholar 

  • Marjanovic M, Gregory C, Ghosh P, Willis JS, Dawson MJ (1993) A comparison of the effects of temperature on phosphorous metabolites, pH and Mg2+ in human and ground squirrel red cells. J Physiol 470:559–574

    Google Scholar 

  • Milanick MA (1989) Na-Ca exchange in ferret red blood cells. Am J Physiol 256:C390–C398

    Google Scholar 

  • Miseta A, Bogner P, Berényi E, Kellermayer M, Galambos C, Wheatley DN, Cameron IL (1993) Relationship between cellular ATP, potassium, sodium and magnesium concentrations in mammalian and avian erythrocytes. Biochim Biophys Acta 1175:133–139

    Article  Google Scholar 

  • Moncrief MBC, Maguire ME (1999) Magnesium transport in prokaryotes. J Biol Inorg Chem 4:523–527

    Article  Google Scholar 

  • Mulquiney PJ, Kuchel PW (1997) Model of the pH-dependence of the concentrations of complexes involving metabolites, haemoglobin and magnesium ions in the human erythrocyte. Eur J Biochem 245:71–83

    Article  Google Scholar 

  • Nordbö R (1939) Bestimmung der Magnesiumionenkonzentration im Ultrafiltrat von Blutserum. Skand Archiv Physiol 81:265–268

    Article  Google Scholar 

  • Ortiz OE, Lew VL, Bookchin RM (1990a) A sodium- and chloride-dependent magnesium efflux in sickle (SS) reticulocytes is highly stimulated by acid pH. Blood 76:14A

    Google Scholar 

  • Ortiz OE, Lew VL, Bookchin RM (1990b) Deoxygenation permeabilizes sickle cell anaemia red cells to magnesium and reverses its gradient in the dense cells. J Physiol 427:211–226

    Google Scholar 

  • Parker JC (1993) In defense of cell volume? Am J Physiol 265:C1191–C1200

    Google Scholar 

  • Picado MJ, De la Sierra A, Aguilera MT, Coca A, Urbano-Márquez A (1994) Increased activity of the Mg2+/Na+ exchanger in red blood cells from essential hypertensive patients. Hypertension 23:987–991

    Article  Google Scholar 

  • Quamme GA, De Rouffignac C (2000) Epithelial magnesium transport and regulation by the kidney. Front Biosci 5:d694–d711

    Article  Google Scholar 

  • Raftos JE, Lew VL, Flatman PW (1999) Refinement and evaluation of a model of Mg2+ buffering in human red cells. Eur J Biochem 263:635–645

    Article  Google Scholar 

  • Rasgado-Flores H, Gonzalez-Serratos H (2000) Plasmalemmal transport of magnesium in excitable cells. Front Biosci 5:d866–d879

    Article  Google Scholar 

  • Rasgado-Flores H, Gonzalez-Serratos H, DeSantiago J (1994) Extracellular Mg2+-depen-dent Na+, K+, and Cl- efflux in squid giant axons. Am J Physiol 266:C1112–C1117

    Google Scholar 

  • Rogers TA (1961) The exchange of radioactive magnesium in erythrocytes of several species. J Cell Comp Physiol 57:119–121

    Article  Google Scholar 

  • Rogers TA, Mahan PE (1959) Exchange of radioactive magnesium in the rat. Proc Soc Exp Biol Med 100:235–239

    Google Scholar 

  • Romani A, Scarpa A (2000) Regulation of cellular magnesium. Front Biosci 5:d720–d734

    Article  Google Scholar 

  • Santarromana M, Delepierre M, Féray JC, Franck G, Garay R, Henrotte JG (1989) Correlation between total and free magnesium levels in human red blood cells. Influence of HLA antigens. Magnes Res 2:281–283

    Google Scholar 

  • Schatzmann HJ (1993) Asymmetry of the magnesium sodium exchange across the human red cell membrane. Biochim Biophys Acta 1148:15–18

    Article  Google Scholar 

  • Schweigel M, Martens H (2000) Magnesium transport in the gastrointestinal tract. Front Biosci 5:d666–d677

    Article  Google Scholar 

  • Smetana R (1997) Advances in magnesium research: 1. Magnesium in cardiology. John Libbey, London

    Google Scholar 

  • Tashiro M, Konishi M, Iwamoto T, Shigekawa M, Kurihara S (2000) Transport of magnesium by two isoforms of the Na+-Ca2+ exchanger expressed in CCL39 fibroblasts. Pflügers Arch 440:819–827

    Article  Google Scholar 

  • Valberg LS, Card RT, Paulson EJ, Szivek J (1965) The metal composition of erythrocytes in different species and its relationship to the lifespan on the cells in the circulation. Comp Biochem Physiol 15:347–359

    Article  Google Scholar 

  • Vormann J, Günther T (1993) Magnesium transport mechanisms. In: Birch NJ (ed) Magnesium and the cell. Academic Press, London, pp 137–155

    Google Scholar 

  • Vormann J, Günther T, Magdorf K, Rob P (1996) Changed erythrocyte magnesium transport in patients with cystic fibrosis and renal failure. J Physiol 493:66P–67P

    Google Scholar 

  • Wacker WEC (1980) Magnesium and man. Harvard University Press, Cambridge

    Google Scholar 

  • Walser M (1961) Ion association. VI. Interactions between calcium, magnesium, inorganic phosphate, citrate and protein in normal human plasma. J Clin Invest 40:723–730

    Article  Google Scholar 

  • Walser M (1967) Magnesium metabolism. Ergebn Physiol 59:185–296

    Article  Google Scholar 

  • Watson WS, Hilditch TE, Horton PW, Davies DL, Lindsay R (1979) Magnesium metabolism in blood and the whole body in man using 28Magnesium. Metabolism 28:90–95

    Article  Google Scholar 

  • Watson WS, Lyon TDB, Hilditch TE (1980) Red cell magnesium as a function of cell age. Metabolism 29:397–399

    Article  Google Scholar 

  • Widmer J, Féray JC, Bovier P, Hilleret H, Raffin Y, Chollet D, Gaillard JM, Garay R (1995a) Sodium-magnesium exchange in erythrocyte membranes from patients with affective disorders. Neuropsychobiol 32:13–18

    Article  Google Scholar 

  • Widmer J, Henrotte JG, Raffin Y, Bovier P, Hilleret H, Gaillard JM (1995b) Relationship between erythrocyte magnesium, plasma electrolytes and Cortisol, and the intensity of symptoms in major depressed-patients. J Affect Disord 34:201–209

    Article  Google Scholar 

  • Widmer J, Henrotte JG, Raffin Y, Mouthon D, Chollet D, Stepanian R, Bovier P (1998) Relationship between blood magnesium and psychomotor retardation in drug-free patients with major depression. Eur Psychiatry 13:90–97

    Article  Google Scholar 

  • Willis JS, Xu W, Zhao Z (1992) Diversities of transport of sodium in rodent red cells. Comp Biochem Physiol 102A:609–614

    Article  Google Scholar 

  • Xu W, Willis JS (1994) Sodium transport through the amiloride-sensitive Na-Mg pathway of hamster red cells. J Membrane Biol 141:277–287

    Article  Google Scholar 

  • Zhang W, Truttmann AC, Luthi D, McGuigan JAS (1997) Apparent Mg2+-adenosine 5-triphosphate dissociation constant measured with Mg2+ macroelectrodes under conditions pertinent to 31P NMR ionized magnesium determinations. Anal Biochem 251:246–250

    Article  Google Scholar 

  • Zhao Z, Willis JS (1993) Cold activation of Na influx through the Na-H exchange pathway in guinea pig red cells. J Membrane Biol 131:43–53

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Flatman, P.W. (2003). Magnesium Transport. In: Bernhardt, I., Ellory, J.C. (eds) Red Cell Membrane Transport in Health and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05181-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05181-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07920-7

  • Online ISBN: 978-3-662-05181-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics