Skip to main content

Pathogenesis of Experimental Tuberculosis in Animal Models

  • Chapter
Tuberculosis

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 215))

Abstract

Pathogenesis, in the context of an infectious disease, can be defined as the temporal interplay between the microbe and its host which ultimately results in clinical illness. An understanding of pathogenesis requires knowledge of the precise aggressive and/or evasive strategies employed by the microbe and the elucidation of the beneficial and detrimental responses which the host develops upon infection. The kinetics of the host-microbe interaction are at least as important as the isolated activities of either protagonist, since the effectiveness of the strategies and counterstrategies is likely to depend upon the context and environment in which the confrontation occurs. For this reason, the pathogenesis of a disease like tuberculosis will only be revealed by studies of the course of infection in a suitable host.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison MJ, Zappasodi P, Lurie MB (1962) Host-parasite relationships in natively resistant and susceptible rabbits on quantitative inhalation of tubercle bacilli: their significance for the nature of genetic resistance. Am Rev Respir Dis 85: 553–569

    PubMed  CAS  Google Scholar 

  • Ando M, Dannenberg AMJr, Sugimoto M, Tepper BS (1977) Histochemical studies relating the activation of macrophages to the intracellular destruction of tubercle bacilli. Am J Pathol 86: 623–634

    PubMed  CAS  Google Scholar 

  • Balasubramanian V, Guo-zhi, W, Wiegeshaus E, Smith D (1992a) Virulence of Mycobacterium tuberculosis for guinea pigs: a quantitative modification of the assay developed by Mitchison. Tubercle Lung Dis 73: 268–272

    CAS  Google Scholar 

  • Balasubramanian V, Wiegeshaus E, Smith D (1992b) Growth characteristics of recent sputum isolates in guinea pigs infected by the respiratory route. Infect Immun 60: 4762–4767

    CAS  Google Scholar 

  • Balasubramanian V, Wiegeshaus E, Smith D (1994) Pathogenesis of tuberculosis: pathway to apical localization. Tubercle Lung Dis 75: 168–178

    CAS  Google Scholar 

  • Barclay WR, Anacker RL, Brehmer W, Lief W, Ribi E (1970) Aerosol-induced tuberculosis in subhuman primates and the course of disease after intravenous BCG-vaccination. Infect Immun 2: 574–582

    PubMed  CAS  Google Scholar 

  • Bartow RA, McMurray DN (1989) Vaccination with Mycobacterium bovis BCG affects the distribution of Fc receptor-bearing T lymphocytes in experimental pulmonary tuberculosis. Infect Immun 57: 1374–1379

    PubMed  CAS  Google Scholar 

  • Bloom BR, Murray CJ (1992) Tuberculosis: commentary on a reemergent killer. Science 257: 1055–1064

    PubMed  CAS  Google Scholar 

  • Bouza E, Diaz-Lopez MD, Moreno S, Bernaldo de Quiros JC, Vincente T, Berenguer J (1993) Mycobacterium tuberculosis bacteremia in patients with and without HIV infection. Arch Intern Med 153: 496–500

    PubMed  CAS  Google Scholar 

  • Buschman E, Apt AS, Nickonenko BV, Moroz AM, Averbakh MH, Skamene E (1988) Genetic aspects of innate resistance and acquired immunity in inbred mice. Springer Semin Immunopathol 10: 319–336

    PubMed  CAS  Google Scholar 

  • Cohen MK, Bartow RA, Mintzer CL, McMurray DN (1987) Effects of diet and genetics on Mycobacterium bovis BCG vaccine efficacy in inbred guinea pigs. Infect Immun 55: 314–319

    PubMed  CAS  Google Scholar 

  • Collins FM (1984) Protection against mycobacterial disease by means of live vaccines tested in experimental animals. In: Kubica GP, Wayne LG (eds). The mycobacteria: a sourcebook Dekker, New York, pp 787–839

    Google Scholar 

  • Collins FM (1991) Antituberculous immunity: new solutions to an old problem. Rev Infect Dis 13: 940–950

    PubMed  CAS  Google Scholar 

  • Collins FM (1993) Tuberculosis: the return of an old enemy. Crit Rev Microbiol 19: 1–16

    PubMed  CAS  Google Scholar 

  • Collins FM, Mackaness GB (1970) The relationship of delayed hypersensitivity to acquired antituberculous immunity. I. Tuberculin sensitivity and resistance to reinfection In BCG-vaccinated mice. Cell Immunol 1: 253–265

    PubMed  CAS  Google Scholar 

  • Collins FM, Montalbine V (1975) Relative immunogenicity of streptomycin-resistant and sensitive strains of BCG. II. Effect of route of inoculation on growth and immunogenicity. Am Rev Respir Dis 111:43–51

    PubMed  CAS  Google Scholar 

  • Collins FM, Smith MM (1969) A comparative study of the virulence of Mycobacterium tuberculosis measured in mice and guinea pigs. Am Rev Respir Dis 100: 631–639

    PubMed  CAS  Google Scholar 

  • Collins FM, Stokes RW (1987) Mycobacterium alum-complex infections in normal and immunodefi­dent mice. Tubercle 68: 127–136

    PubMed  CAS  Google Scholar 

  • Collins FM, Wayne LG, Montalbile V (1974) The effect of cultural conditions on the distributiion of Mycobacterium tuberculosis in the spleens and lungs of specific pathogen-free mice. Am Rev Respir Dis 110: 147–156

    PubMed  CAS  Google Scholar 

  • Collins FM, Auclair L, Mackaness GB (1977) Mycobacterium bovis (BCG) infections of the lymph nodes of normal, immune and cortisone-treated guinea pigs. J Natl Cancer Inst 59: 1527–1535

    PubMed  CAS  Google Scholar 

  • Comstock GW (1988) Identification of an effective vaccine against tuberculosis. Am Rev Respir Dis 138: 479–480

    PubMed  CAS  Google Scholar 

  • Dalton DK, Pitts-Meek S, Keshav S, Figari IS, Bradley A, Stewart TA (1993) Multiple defects of immune cell function in mice with disrupted IFN-ygenes. Science 259: 1739–1742

    PubMed  CAS  Google Scholar 

  • Dannenberg AMJr (1968) Cellular hypersensitivity and cellular immunity in the pathogenesis of tuberculosis; specificity, systemic and local nature, and associated macrophage enzymes. Bacteriol Rev 32: 85–102

    PubMed  Google Scholar 

  • Dannenberg AMJr (1984) Pathogenesis of tuberculosis: native and acquired resistance in animals and humans. In: Leive L, Schlessinger D (eds) Micribiology- 1984. American Society for Microbiology, Washington D C, PP 344–354

    Google Scholar 

  • Dannenberg AMJr (1989) Immune mechanisms in the pathogenesis of pulmonary tuberculosis. Rev Infect Dis 11 [Suppl 21: S369–S378

    Google Scholar 

  • Dannenberg AMJr (1990) Controlling tuberculosis: the pathologist’s point of view, Res Microbiol 141: 192–196

    PubMed  Google Scholar 

  • Dannenberg AMJr (1993) Immunopathogenesis of pulmonary tuberculosis. Hosp Pract 28: 51–58

    Google Scholar 

  • Dannenberg AMJr (1994a) Rabbit model of tuberculosis. In: Bloom BR (ed) Tuberculosis: pathogenesis, protection and control. ASM, Washington D C, pp 149–156

    Google Scholar 

  • Dannenberg AMJr (1994b) Roles of cytotoxic delayed-typed hypersensitivity and macrophage-activating cell-mediated immunity in the pathogenesis of tuberculosis. Immunobiology 191: 461–473

    Google Scholar 

  • Dannenberg AMJr, Rook GAW (1994) Pathogenesis of pulmonary tuberculosis: an interplay of tissue-damaging and macrophage-activating immune responses-dual mechanisms that control bacillary multiplication. In: Bloom BR (ed) Tuberculosis: pathogenesis, protection and control. ASM, Washington D C, pp 459–483

    Google Scholar 

  • Dannenberg AMJr, Tomashefski JFJr (1988) Pathogenesis of pulmonary tuberculosis. In: Fishman AP (ed) Pulmonary diseases and disorders, 2nd edn: vol 3. McGraw-Hill, New York, pp 1821–1842

    Google Scholar 

  • Dannenberg AMJr, Meyer OT, EsterlyJr, Kambara T (1968) The local nature of immunity in tuberculosis, illustrated histochemically in dermal BCG lesions. J Immunol 100: 931–941

    PubMed  Google Scholar 

  • Dubos RJ, Pierce CH (1956) Differential characteristics in vitro and in vivo of several substrains of BCG. IV. Immunizing effectiveness. Am Rev Tuberc 74: 699–717

    PubMed  CAS  Google Scholar 

  • Dubos RJ, Schaefer WB (1953) Antituberculous immunity induced in mice by vaccination with living cultures of attenuated tubercle bacilli. J Exp Med 97: 207–220

    PubMed  CAS  Google Scholar 

  • Ellner JJ, Hinman AR, Booley SW, Fischt MA, Sepkowitz KA, Goldberger MJ, Schinnick TM, Iseman MD, Jacobs WR (1993) Tuberculosis symposium: emerging problems and promise. J Infect Dis 168: 537–551

    PubMed  CAS  Google Scholar 

  • Fine PEM (1989) The BCG story: lessons from the past and implications for the future. Rev Infect Dis 57 [Suppl 21: S353–359

    Google Scholar 

  • Flynn JL, Goldstein MM, Tribold KJ, Koller B, Bloom BR (1992) Major histocompatibility complex class I-restricted T cells are required for resistance Mycobacterium tuberculosis infection. Proc Natl Acad Sci USA 89: 12013–12017

    PubMed  CAS  Google Scholar 

  • Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR (1993) An essential role for IFN-y in resistance to Mycobacterium tuberculosis. J Exp Med 178: 2248–2253

    Google Scholar 

  • Fogarty Center Workshop (1978) Summary, conclusions and recommendations from the international workshop on “research toward global control and prevention of tuberculosis: with an emphasis on vaccine development”. J Infect Dis 158: 248–253

    Google Scholar 

  • Fok JS, Ho RS, Arora PK, Harding GE, Smith DW (1976) Host-parasite relationships in experimental airborne tuberculosis. V. Lack of hematogeneous dissemination of Mycobacterium tuberculosis to the lungs of animals vaccinated with bacille-Calmette-Guerin. J Infect Dis 133: 137–144

    PubMed  CAS  Google Scholar 

  • Grange JM, Gibson J, Osborn TW, Collins CH, Yates MD (1983) What is BCG? Tubercle 64: 129–139

    CAS  Google Scholar 

  • Gray DF (1961) The relative natural resistance of rats and mice to experimental pulmonary tuberculosis. J Hyg 59: 471–477

    CAS  Google Scholar 

  • Grover AA, Kim HK, Wiegeshaus EH, Smith DW (1967) Host-parasite relationships in experimental airborne tuberculosis II. Reproducible infection by means of an inoculum preserved at - 70C. J Bacteriol 94: 832–835

    PubMed  CAS  Google Scholar 

  • Gussman RA (1984) Notes on the particle size ouput of Collison Nebulizers. Am Indust Hyg Assoc J 45: B8–B12

    Google Scholar 

  • Harding GE, Smith DW (1977) Host-parasite relationships in experimental airbone tuberculosis. VI. Influence of vaccination with bacille-Calmette-Guerin on the onset and/or extent of hematoge­neous dissemination of virulent Mycobacterium tuberculosis to the lungs. J Infect Dis 136: 439­-443

    PubMed  Google Scholar 

  • Ho RS, Fok JS, Harding GE, Smith DW (1978) Host-parasite relationships in experimental airborne tuberculosis. VII. Fate of Mycobacterium tuberculosis in primary lung lesions and in primary lesion-free lung tissue infected as a result of bacillemia. J Infect Dis 138: 237–241

    PubMed  CAS  Google Scholar 

  • Jespersen A (1956) Studies on tuberculin sensitivity and immunity in guinea pigs induced by vaccination with varying doses of BCG vaccine. Acta Pathol Microbiol Scand 38: 203–209

    PubMed  CAS  Google Scholar 

  • Kaufmann SHE (1988) CDB*T lymphocytes in intracellular microbial infections. Immunol Today 9: 168–174

    PubMed  CAS  Google Scholar 

  • Koch R (1882) Aetiologie der Tuberculose. Berl Klin Wochenschr 19: 221–230

    Google Scholar 

  • Koller B, Marrack P, Kappler JW, Smithies O (1990) Normal development of mice deficient in ß2 M, MHC Class I proteins and CD8+T-cells. Science 248: 1227–1230

    PubMed  CAS  Google Scholar 

  • Lagranderie M, Ravisse P, Marchai G, Gheorghiu M, Balasubramanian V, Wiegeshaus E, Smith DW (1993) BCG-induced protection in guinea pigs vaccinated and challenged via the respiratory route. Tubercle Lung Dis 74: 38–46

    CAS  Google Scholar 

  • Largrange PH, Miller TE, Mackaness GB (1976) Parameters conditioning the potentiating effect of BCG on the immune response. IN: Lamoureaux G, Turcotte R, Portelance V (eds) BCG in cancer immunotherapy. Grune and Stratton, New York, pp 23–26

    Google Scholar 

  • Long ER, Vorwald AJ, Donaldson L (1931) Early cellular reaction to tubercle bacilli: a comparison of this reaction in normal and tuberculous guinea pigs and in guinea pigs immunized with dead bacilli. Arch Pathol 12: 956–969

    Google Scholar 

  • Lurie MB (1964) Resistance to tuberculosis: experimental stuides in native and acquired defensive mechanisms. Harvard University Press, Cambridge MA

    Google Scholar 

  • Lurie MB, Dannenberg AMJr (1965) Macrophage function in infectious disease with inbred rabbits. Bacteriol Rev 29: 466–476

    PubMed  CAS  Google Scholar 

  • Lurie MB, Abramson BS, Heppleston AG (1952a) On the response of genetically resistant and susceptible rabbits to the quantitative inhalation of human type tubercle bacilli and the nature of resistance to tueberculosis. J Exp Med 95: 119–134

    CAS  Google Scholar 

  • Lurie MB, Zappasodi P, Cardona-Lynch E, Dannenberg AMJr (1952b) The response to the intracutaneous inoculation of BCG as an index of native resistance to tuberculosis. J Immunol 68: 369–387

    CAS  Google Scholar 

  • Lurie MB, Zappasodi P, Tickner C (1955) 0n the nature of genetic resistance of tuberculosis in the light of the host-parasite relationships in natively resistant and susceptible rabbits. Am Rev Tuberc Pulm Dis 72: 297–329

    CAS  Google Scholar 

  • Lynch CL, Pierce-Chase CH, Dubos RJ (1965) A genetic study of susceptibility to experimental tuberculosis in mice infected with mammalian tubercle bacilli. J Exp Med 121: 1051–107

    PubMed  CAS  Google Scholar 

  • Mainali ES, McMurray DN (submitted for publication) Adoptive transfer of resistance to pulmonary tuberculosis in guinea pigs is altered by protein deficiency

    Google Scholar 

  • McMurrary DN (1994) Guinea pig model of tuberculosis. In: Bloom BR (ed) Tuberculosis: pathogenesis, protection, and control. ASM, Washington DC, pp 135–147

    Google Scholar 

  • McMurray Dn, Bartow RA (1992) Immunosuppression and alternation of resistance to pulmonary tuberculosis in guinea pigs by protein undernutrition. J Nutr 122: 738–743

    PubMed  CAS  Google Scholar 

  • McMurray DN, Echeverry A (1978) Cell-mediated immunity in anergic patients with pulmonary tuberculosis. Am Rev Respir Dis 118: 827–834

    PubMed  CAS  Google Scholar 

  • McMurray DN, Carlomagno MA, Mintzer CL, Tetzlaff CL (1985) Mycobacterium bovis BCG vaccine fails to protect protein-deficient guinea pigs against respiratory challenge with virulent Mycobacterium tuberculosis., Infect Immun 50: 555–559

    PubMed  CAS  Google Scholar 

  • McMurray DN, Kimball MS, Tetzlaff CL, Mintzer CL (1986a) Effects of protein deprivation and BCG vaccination on alveolar macrophage function in pulmonary tuberculosis. Am Rev Respir Dis 133: 1081–1085

    CAS  Google Scholar 

  • McMurray DN, Mintzer CL, Tetzlaff CL, Carlomagno MA (1986b) Influence of dietary protein on the protective effect of BCG in guinea pigs. Tubercle 67: 31–39

    CAS  Google Scholar 

  • McMurray DN, Mintzer CL, Bartow RA, Parr RL (1989) Dietary protein deficiency and Mycobacterium bovis BCG affect interleukin 2 activity in experimental pulmonary tuberculosis. Infect Immun 57: 2606–2611

    PubMed  CAS  Google Scholar 

  • Middlebrook GM (1952) An apparatus for airborne infection of mice. Proc Soc Exp Biol Med 80: 105­-110

    PubMed  Google Scholar 

  • Mitchison DA (1964) The virulence of tubercle bacilli from patients with pulmonary tuberculosis in India and other countries. Bull Int Union Against TB 35: 287–306

    CAS  Google Scholar 

  • Muller I, Cobbold S, Waldmann H, Kaufmann SHE (1990) Impaired resistance to Mycobacterium tuberculosis infection after selective in vivo depletion of L3T4+ and Lyt-2+ T cells. Infec Immun 55: 2037–2041

    Google Scholar 

  • Nickonenko BV, Apt AS, Moroz AM, Averbakh MM, Skamene E (1985) Genetic analysis of susceptibility of mice to H37Rv tuberculosis infection: sensitivity versus relative resistance. Prog Leukoc Biol 3: 291–296

    Google Scholar 

  • North RJ (1973) Importance of thymus-derived lymphocytes in cell-mediated immunity to infection. Cell Immunol 7: 166–176

    PubMed  CAS  Google Scholar 

  • North RJ, Izzo AA (1993) Granuloma formation in severe combined immunodeficient (SCID) mice in response to progressive BCG infection. Am J Pathol 142: 1959–1966

    PubMed  CAS  Google Scholar 

  • Orme IM (1987) The kinetics of emergence and loss of mediator T lymphocytes in response to infection with M. tuberculosis. J Immunol 138: 293–298

    PubMed  CAS  Google Scholar 

  • Orme IM, Collins FM (1983) Protection against Mycobacterium tuberculosis infection by adoptive immunotherapy. J Exp Med 158: 74–83

    PubMed  CAS  Google Scholar 

  • Orme IM, Collins FM (1994) Mouse model of tuberculosis. In: Bloom BR (ed) Tuberculosis: pathogenesis, protection and control. American Society for Microbiology, Washington DC, pp 113­134

    Google Scholar 

  • Orme IM, Miller ES, Roberts AD, Furney SK, Griffin JP, Dobos KM, Chi D, Rivoire B, Brennan PJ (1992) T lymphocytes mediating protection and cellular cytolysis during the course of Mycobacterium tuberculosis infection. J Immunol 148: 189–196

    PubMed  CAS  Google Scholar 

  • Phalen SW, McMurray DN (1993a) T lymphocyte response in a guinea pig model of tuberculous pleuritis. Infect Immun 61: 142–145

    CAS  Google Scholar 

  • Phalen SW, McMurray DN (1993b) Production of tumor necrosis factor (TNFcc) in experimental tuberculous pleuritis. J Immunol 150: 66A

    Google Scholar 

  • Pierce CH, Dubos RJ and Schaefer WB (1956) Differential characteristics in vitro and in vivo of several substrains of BCG. III. Multiplication and survival in vivo. Am Rev Tuberc 74: 683–698

    PubMed  Google Scholar 

  • Pittsfield Conference (1986) Supplement of future research in tuberculosis. Prospects and priorities for elimination (Pittsfield, MA). Am Rev Respir Dis 134: 401–423

    Google Scholar 

  • Prabhakar R, Venkataraman P, Vallishayee RS, Resser P, Musa S, Hashim R, Kim Y, Dimmer C, Wiegeshaus E, Edwards M, Smith DW (1987) Virulence for guinea pigs of tubercle bacilli isolated from the sputum of persons included in the BCG trial, Chingleput district, south India. Tubercle 68: 3–17

    PubMed  CAS  Google Scholar 

  • Ratcliffe HL, Palladino VS (1953) Tuberculosis induced by droplet nuclei infection: initial homogeneous response of small mammals (rats, mice, guinea pigs and hamsters) to human and to bovine bacilli and the rate and pattern of tubercle development. J Exp Med 97: 61–68

    PubMed  CAS  Google Scholar 

  • Riley RL, Mills CC, O’Grady F, Sultan LU, Wittstadt F, Shivpuri DN (1962) Infectiousness of air from a tuberculosis ward. Ultraviolet irradiation of infected air: comparative infectiousness of different patients. Am Rev Respir Dis 85: 511–525

    PubMed  CAS  Google Scholar 

  • Rook GAW (1990) Mycobacteria, cytokines and antibiotics. Pathol Biol 38: 276–280

    PubMed  CAS  Google Scholar 

  • Schaaf HS, Gie RP, Beyers N, Smuts N, Donald PR (1993) Tuberculosis in infants less than 3 months of age. Arch Dis Child 69: 371–374

    PubMed  CAS  Google Scholar 

  • Schultz LD, Sidman CL (1987) Genetically determined murine models of immunodeficiency. Annu Rev Immunol 5: 367–403

    Google Scholar 

  • Siebenmann CO, Barbara C (1974) Quantitative evaluation of the effectiveness of Connaught freezdried BCG vaccine in mice and guinea pigs. Bull World Health Organ 51: 283–290

    PubMed  CAS  Google Scholar 

  • Smith DW, Harding GE (1977a) Animal model: experimental airborne tuberculosis in the guinea pig. Am J Pathol 89: 273–276

    CAS  Google Scholar 

  • Smith DW, Harding GE (1977b) Approaches to the validation of animal test systems for assay of the protective potency of BCG vaccines. J Biol Stand 5: 131–138

    CAS  Google Scholar 

  • Smith DW, Wiegeshaus EH. (1989) What animal models can teach us about the pathogenesis of tuberculosis in humans. Rev Infect Dis 11: 5385–5393

    Google Scholar 

  • Smith DW, McMurray DN, Wiegeshaus EH, Grover AA, Harding GE (1970) Host-parasite relationships in experimental airbrone tuberculosis. IV. Early events in the course of infection in vaccinated and nonvaccinated guinea pigs. Am Rev Respir Dis 102: 937–949

    PubMed  CAS  Google Scholar 

  • Smith DW, Harding G, Chan J, Edwards M, Hank J, Muller D, Sobhi F (1979) Potency of 10 BCG vaccines as evaluated by their influence on the bacillemic phase of experimental airborne tuberculosis in guinea-pigs. J Biol Stand 7: 179–197

    PubMed  CAS  Google Scholar 

  • Smith DW, Balasubramanian V, Wiegeshaus E (1991) A guinea pig model of experimental airborne tuberculosis for evaluation of the response to chemotherapy: the effect on bacilli in the initial phase of treatment. Tubercle 72: 223–231

    PubMed  CAS  Google Scholar 

  • Stead WW (1989) Pathogenesis of tuberculosis: clinical and epidemiological perspective. Rev Infect Dis 11: 366–368

    Google Scholar 

  • Tsuda T, Dannenberg AM,Jr Ando M, Abbey H, Corrin AR (1976) Mononuclear cell turn-over in chronic inflammation. Studies on tritiated thymidine-labeled cells in the blood, tuberculin traps, and dermal BCG lesions of rabbits. Am J Pathol 83: 255–268

    PubMed  CAS  Google Scholar 

  • Wells AQ (1937) Tuberculosis in wild voles. Lancet 232: 1221

    Google Scholar 

  • Wessels CC (1941) Tuberculosis in the rat. I. Gross organ changes and tuberculin sensitivity in rats infected with tubercle bacilli. Il. The fate of tubercle bacilli in the various organs of the rat. Ill. The correlation between the histological changes and the fate of living tubercle bacilli in the organs of the albino rat. Am Rev Tuberc Pulm Dis 43: 449–458; 459–474; 637–644

    Google Scholar 

  • Wiegeshaus EH, Smith DW (1989) Evaluation of the protective potency of new tuberculosis vaccines. Rev Infect Dis 11 Supply: S484—S490

    PubMed  Google Scholar 

  • Wiegeshaus EH, McMurray DN, Grover AA, Harding GE, Smith DW (1970) Host-parasite relationships in experimental airborne tuberculosis Ill: relevance of microbial enumeration to acquired cellular resistance in guinea pigs. Am Rev Respir Dis 102: 422–429

    PubMed  CAS  Google Scholar 

  • Wiegeshaus E, Harding G, McMurray D, Grover AA, Smith DW (1971) A cooperative evaluation of test systems used to assay tuberculosis vaccines. Bull World Health Organ 45: 543–550

    PubMed  CAS  Google Scholar 

  • Wiegeshaus EH, Balasubramanian V, Smith DW (1989) Immunity to tuberculosis from the perspective of pathogenesis. Infect Immun 57: 3671–3676

    PubMed  CAS  Google Scholar 

  • World Health Organization (1976) The role of the individual and the community in the research, development, and used of biologicals with critieria for guidelines: a memorandum. Bull WHO 54: 645–655

    Google Scholar 

  • World Health Organization (1982) Immunological research in tuberculosis: a memorandum Bull. WHO 60: 723–727

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McMurray, D.N., Collins, F.M., Dannenberg, A.M., Smith, D.W. (1996). Pathogenesis of Experimental Tuberculosis in Animal Models. In: Shinnick, T.M. (eds) Tuberculosis. Current Topics in Microbiology and Immunology, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80166-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80166-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80168-6

  • Online ISBN: 978-3-642-80166-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics