Skip to main content

The Tc1/mariner Transposon Family

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 204))

Abstract

In many animals the main cause of mutations is transposon insertion. This is true, e.g., for strains of the nematode species C. elegans. It is not true for humans, where only relatively few cases have been reported of germline mutations caused by new transposon insertions, and where base-pair substitutions, frame-shifts, and errors in replication of nucleotide repeats are more common (Dombroski et al. 1991, 1993; Caskey et al. 1992). Caenorhabditis elegans is a free-living nematode that can be found in the soil anywhere in the world. All C. elegans strains analyzed to date contain several copies of the transposable element Tc1 (Transposon C. elegans number 1) (Emmons et al. 1980, 1983; Liao et al. 1983). Insertion of Tc1 is the main cause of gene inactivation in the strain Bergerac (Moerman and Waterston 1984; Eide and Anderson 1985). Since discovery of the Tc1 element, related elements have been found in the same species, and elements discovered in other species were also found to be homologous to Tc1. The best-described example is the mariner element, discovered in Drosophila mauritiana (Jacobson et al. 1986; Hartl 1989). At present it seems that members of the Tc1/mariner transposon family are found in virtually all animal phyla: vertebrates (Henikoff 1992; Heierhorst et al. 1992; Goodier and Davidson 1994; Radice et al. 1994), nematodes (Collins et al. 1989; Abad et al. 1991; Prasad et al. 1991; Sedensky et al. 1994), arthropods (Robertson 1993, 1994; Harris et al. 1988; Henikoff and Plasterk 1988; Brierley and Potter 1985; Hartl 1989; Harris et al. 1990; Garcia-Fernandez et al. 1993; Robertson et al. 1992; Caizzi et al. 1993; Franz and Savakis 1991; Bigot et al. 1994; Franz et al. 1994; Brezinsky et al. 1990), planarians (Capy et al. 1994), ciliates (Tausta and Klobutcher 1989; Williams et al. 1993), and even fungi (Daboussi et al. 1992). A recent alignment of the elements is in Robertson (1995).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abad P, Quiles C, Tares S, Piotte C, Castagnone-Sereno P, Abadon M, Dalmasso A (1991) Sequences homologous to Tc(s) transposable elements of Caenorhabditis elegans are widely distributed in the phylum nematoda J Mol Evol 33: 251–258

    Article  PubMed  CAS  Google Scholar 

  • Abad P, Cerutti M, Pauron D, Quiles C, Palin B, Devauchelle G, Dalmasso A (1993) Expression and biochemical characterization of the DNA-binding activity of T, the putative transposase of Caenorhabditis elegans transposable element Tel. Biochem Biophys Res Commun 192: 1445–1452

    Article  PubMed  CAS  Google Scholar 

  • Anderson P, Emmons SW, Moerman DG (1992) Discovery of Tc1 in the nematode Caenorhabditis elegans. In: Fedoroff N, Bostein D (eds) The dynamic genome: Barbara McClintock’s ideas in the century of genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 319–333

    Google Scholar 

  • Babity JM, Starr TVB, Rose AM (1990) Tc1 transposition and mutator activity in a Bristol strain of Caenorhabditis elegans. Mol Gen Genet 222: 65–70

    PubMed  CAS  Google Scholar 

  • Ballinger DG, Benzer S (1989) Targeted gene mutations in Drosophila. Proc Natl Acad Sci USA 86: 9402–9406

    Article  PubMed  CAS  Google Scholar 

  • Bigot Y, Hamelin M, Capy P, Periquet G (1994) Mariner-Wke elements in hymenopteran species: insertion site and distribution. Proc Natl Acad Sci USA 91: 3408–3412

    Article  PubMed  CAS  Google Scholar 

  • Brezinsky L, Wang GV, Humphreys T, Hunt J (1990) The transposable element Uhu from Hawaiian Drosophila-member of the widely dispersed class of Tc1-like transposons. Nucleic Acids Res 18: 2053–2059

    Article  PubMed  CAS  Google Scholar 

  • Brierley HL, Potter SS (1985) Distinct characteristics of 100p sequences of two Drosophila foldback transposable elements Nucleic Acids Res 13: 485

    Article  PubMed  CAS  Google Scholar 

  • Bryan GJ, Hartl DL (1988) Maternally inherited transposon excision in Drosophila simulans. Science 240: 215–217

    Article  PubMed  CAS  Google Scholar 

  • Bryan GJ, Garza D, Hartl D (1990) Insertion and excision of the transposable element mariner in Drosophila. Genetics 125: 103–114

    PubMed  CAS  Google Scholar 

  • Caizzi R, Caggese C, Pimpinelli S (1993) Bari-1, a new transposon-like family in Drosophila melanogaster with a unique heterochromatic organization. Genetics 133: 335–345

    PubMed  CAS  Google Scholar 

  • Capy P, Anxolabéhére D, Langin T (1994) The strange phylogenies of transposable elements: are horizontal transfers the only explanation? Trends Genet 10: 7–12

    Article  PubMed  CAS  Google Scholar 

  • Carr B, Anderson P (1994) Imprecise excision of the Caenorhabditis elegans transposon Tc1 creates functional 51 splice sites. Mol Cell Biol 14: 3426–3433

    PubMed  CAS  Google Scholar 

  • Caskey CT, Pizzuti A, Fu YH, Fenwick RG jr, Nelson DL (1992) Triplet repeat mutations in human disease. Science 256: 784–789

    Article  PubMed  CAS  Google Scholar 

  • Collins J, Anderson P (1994) The Tc5 family of transposable elements in Caenorhabditis elegans. Genetics 137: 771–781

    PubMed  CAS  Google Scholar 

  • Collins J, Saari B, Anderson P (1987) Activation of a transposable element in the germline but not the soma of Caenorhabditis elegans. Nature 328: 726–728

    Article  PubMed  CAS  Google Scholar 

  • Collins J, Forbes E, Anderson P (1989) The Tc3 family of transposable elements inCaenorhabditis elegans. Genetics 121:47–55

    PubMed  CAS  Google Scholar 

  • Colloms SD, van Luemen HGAM, Plasterk RHA (1994) DNA binding activities of the Caenorhabditis elegans Tc3 transposase. Nucl Acids Res 25: 5548–5554

    Article  Google Scholar 

  • Daboussi M, Langin T, Brygoo Y (1992) Fotl, a new family of fungal transposable elements. Mol Gen Genet 232: 12–16

    Article  PubMed  CAS  Google Scholar 

  • Doak TG, Doerder FP, Jahn CL, Herrick G (1994) A proposed superfamily of transposase-related genes: new members in transposase-like elements of ciliated protozoa and a common “D35E” motif Proc Natl Acad Sci USA 91: 942–946

    Article  PubMed  CAS  Google Scholar 

  • Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HHJ (1991). Isolation of an active human transposable element. Science 254: 1805–1808

    Article  PubMed  CAS  Google Scholar 

  • Dombroski BA, Scott AF, Kazazian HHJ (1993) Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element. Proc Natl Acad Sci USA 90:6513–6517

    Article  PubMed  CAS  Google Scholar 

  • Eide D, Anderson P (1985) Transposition of Tc1 in the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 82: 1756–1760

    Article  PubMed  CAS  Google Scholar 

  • Eide D, Anderson P (1988) Insertion and excision of Caenorhabditis elegans transposable element Tc1. Mol Cell Biol 8: 737–746

    PubMed  CAS  Google Scholar 

  • Emmons SW, Yesner L (1984) High-frequency excision of transposable element Tc1 in the nematode Caenorhabditis elegans is limited to somatic cells. Cell 36: 599–605

    Article  PubMed  CAS  Google Scholar 

  • Emmons SW, Rosenzweig B, Hirsch D (1980) Arrangement of repeated sequences in the DNA of the nematode Caenorhabditis elegans. J Mol Biol 144: 481–500

    Article  PubMed  CAS  Google Scholar 

  • Emmons SW, Yesner L, Ruan K, Katzenberg D (1983) Evidence for a transposon in Caenorhabditis elegans. Cell 32: 55–65

    Article  PubMed  CAS  Google Scholar 

  • Emmons SW, Roberts S, Ruan K (1986) Evidence in a nematode for regulation of transposon excision by tissue-specific factors. Mol Gen Genet 202: 415–419

    Article  Google Scholar 

  • Engels WR (1989) P elements inDrosophila melanogaster. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 437–484

    Google Scholar 

  • Engels WR, Johnson-Schlitz DM, Eggleston WB, Sved J (1990) High-frequency P element loss in Drosophila is homolog independent. Cell 62: 515–525

    Article  PubMed  CAS  Google Scholar 

  • Fayet O, Ramond P, Polard P, Prere MF, Chandler M (1990) Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences? Mol Microbipl 4:1771–1777

    Article  CAS  Google Scholar 

  • Finney M (1987) The genetics and molecular biology of unc-86, a C. elegans cell lineage gene. PhD thesis, Massachussetts Institute of Technology, Cambridge MA

    Google Scholar 

  • Franz G, Savakis C (1991) Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Res 19: 6646

    Article  PubMed  CAS  Google Scholar 

  • Franz G, Loukeris TG, Dialektaki G, Thompson CRL, Savakis C (1994) Mobile Minos elements from Drosophila hydei encode a two-exon transposase with similarity to the paired DNA-binding domain. Proc Natl Acad Sci 91: 4746–4750

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Fernandez J, Marfany G, Baguna J, Salo E (1993) Infiltration ofmariner elements. Nature 364: 109–110

    Article  PubMed  CAS  Google Scholar 

  • Goodier JL, Davidson WS (1994) Tc1 transposon-like sequences are widely distributed in salmonids. J Mol Biol 241:26–34

    Article  PubMed  CAS  Google Scholar 

  • Greenwald IS (1985) Lin-12. A nematode homeotic gene is homologous to a set of mammalian proteins that includes epidermal growth factor. Cell 43: 583–590

    Article  PubMed  CAS  Google Scholar 

  • Grossnikiaus U, Bellen HJ, Wilson C, Gehring WJ (1989) P-element-mediated enhancer detection applied to the study of oogenesis in Drosophila. Development 107: 189–200

    Google Scholar 

  • Harris LJ, Baillie DL, Rose AM (1988) Sequence identity between an inverted repeat family of transposable elements in Drosophila andCaenorhabditis. Nucleic Acids Res 16: 5991–5998

    Article  PubMed  CAS  Google Scholar 

  • Harris LJ, Prasad S, Rose AM (1990) Isolation and sequence analysis of Caenorhabditis briggsae repetitive elements related to the Caenorhabditis elegans transposon Tc1. J Mol Evol 30: 359–369

    Article  PubMed  CAS  Google Scholar 

  • Hartl DL (1989) Transposable element mariner in Drosophila species. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 531–536

    Google Scholar 

  • Heierhorst J, Lederis K, Richter D (1992) Presence of a member of the Tc1 -like transposon family from nematodes and Drosophila within the vasotocin gene of a primitive vertebrate, the Pacific hagfish Eptatretus stouti. Proc Natl Acad Sci USA 89: 6798–6802

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S (1992) Detection ofCaenorhabditis transposon homologs in diverse organisms. New Biol 4: 382–388

    PubMed  CAS  Google Scholar 

  • Henikoff S, Plasterk RHA (1988) Related transposons in C. elegans and D. melanogaster. Nucleic Acids Res 16: 6234

    Article  PubMed  CAS  Google Scholar 

  • Herman RK, Shaw JE (1987) The transposable genetic element Tc1 in the nematode Caenorhabditis elegans. Trends Genet 3: 222–225

    Article  CAS  Google Scholar 

  • Hurst GDD, Hurst LD, Majerus MEN (1992) Selfish genes move sideways. Nature 356: 659–660

    Article  PubMed  CAS  Google Scholar 

  • Jacobson JW, Medhora MM, Hartl DL (1986) Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci USA 83: 8684–8688

    Article  PubMed  CAS  Google Scholar 

  • Kaiser K (1993) Second-generation enhancer traps. Curr Biol 3: 560–562

    Article  PubMed  CAS  Google Scholar 

  • Kaiser K, Goodwin SF (1990) “Site-selected” transposon mutageneis of Drosophila. Proc Natl Acad Sci USA 87: 1686–1690

    Article  PubMed  CAS  Google Scholar 

  • Kidwell MG (1993) Voyage of an ancient mariner. Nature 362: 202

    Article  PubMed  CAS  Google Scholar 

  • Kiff JE, Moerman DG, Schriefer LA, Waterston R H (1988) Transposon-induced deletions in unc-22 of C. elegans associates with almost normal gene activity. Nature 331: 631–633

    Article  PubMed  CAS  Google Scholar 

  • Kulkosky J, Jones KS, Katz RA, Mack JPG, Skalka AM (1992) Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol Cell Biol 12: 2331–2338

    PubMed  CAS  Google Scholar 

  • Levitt A, Emmons SW (1989) The Tc2 transposon in Caenorhabditis elegans. Proc Natl Acad Sci USA 86:3232–3236

    Article  PubMed  CAS  Google Scholar 

  • Li W, Shaw JE (1993) A variant Tc4 transposable element in the nematode C. elegans could encode a novel protein. Nucleic Acids Res 21: 59–67

    Article  PubMed  CAS  Google Scholar 

  • Liao LW, Rosenzweig B, Hirsh D (1983) Analysis of a transposable element inCaenorhabditis elegans. Proc Natl Acad Sci USA 80: 3585–3589

    Article  PubMed  CAS  Google Scholar 

  • Lidholm DA, Lohe AR, Hartl DL (1993) The transposable element mariner mediates germline transformation in Drosophila melanogaster. Genetics 134: 859–868

    PubMed  CAS  Google Scholar 

  • Maruyama K, Hartl DL (1993) Evidence for interspecific transfer of the transposable element mariner between Drosophila and Zaprionus. J Mol Evol 33: 514–524

    Article  Google Scholar 

  • Medhora MM, Maeek AH, Hartl DL (1988) Excision of theDrosophila transposable element mariner: identification and characterization of the Mos factor. EMBO J 7: 2185–2189

    PubMed  CAS  Google Scholar 

  • Moerman DG, Waterston RH (1984) Spontaneous unstable unc-22 IV mutations in C. elegans var bergerac. Genetics 108: 859–877

    PubMed  CAS  Google Scholar 

  • Moerman DG, Waterston RH (1989) Mobile elements inCaenorhabditis elegans and other nematodes. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 537–556

    Google Scholar 

  • Moerman DG, Benian GM, Waterston RH (1986) Molecular cloning of the muscle gene unc-22 in Caenorhabditis elegans by Tc1 transposon tagging. Proc Natl Acad Sci USA 83: 2579–2583

    Article  PubMed  CAS  Google Scholar 

  • Mori I, Benian GM, Moerman DG, Waterston RH (1988a) Transposable element Tc1 of Caenorhabditis elegans recognizes specific target sequences for integration. Proc Natl Acad Sci USA 85: 861–864

    Article  PubMed  CAS  Google Scholar 

  • Mori I, Moerman DG, Waterston RH (1988b) Analysis of a mutator activity necessary for germline transposition and excision of Tc1 transposable elements inCaenorhabditis elegans. Genetics 120:397–407

    PubMed  CAS  Google Scholar 

  • Mori I, Moerman DG, Waterston RH (1990) Interstrain crosses enhance excision of Tc1 transposable elements in Caenorhabditis elegans. Mol Gen Genet 220: 251–255

    Article  PubMed  CAS  Google Scholar 

  • Plasterk RHA (1987) Differences between Tc1 elements from the Caenorhabditis elegans strain Bergerac. Nucleic Acids Res 15: 10050

    Article  PubMed  CAS  Google Scholar 

  • Plasterk RHA (1991) The origin of footprints of the Tc1 transposon of Caenorhabditis elegans. EMBO J 10: 1919–1925

    PubMed  CAS  Google Scholar 

  • Plasterk RHA (1992) Reverse genetics of Caenorhabditis elegans. Bioessays 14: 629–633

    Article  PubMed  CAS  Google Scholar 

  • Plasterk RHA, Groenen JTM (1992) Targeted alterations of the Caenorhabditis elegans genome by transgene instructed DNA double-strand break repair following Tc1 excision. EMBO J 11: 287–290

    PubMed  CAS  Google Scholar 

  • Prasad SS, Harris LJ, Baillie DL, Rose AM (1991) Evolutionarily conserved regions in Caenorhabditis transposable elements deduced by sequence comparison. Genome 34: 6–12

    Article  PubMed  CAS  Google Scholar 

  • Radice AD, Emmons SW (1993) Extrachromosal circular copies of the transposon Tel. Nucleic Acids Res 21 2663–2667

    Article  PubMed  CAS  Google Scholar 

  • Radice AD, Bugaj B, Fitch DHA, Emmons SW (1994) Widespread occurrence of the Tc1 transposon family: Tcl-like transposons from teleost fish. Mol Gen Genet 244: 606–612

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM (1993) The mariner transposable element is widespread in insects. Nature 362: 241–245

    Article  PubMed  CAS  Google Scholar 

  • Robertson HM (1995) The Tc1-mariner superfamily of transposons in animals. J Insect Physiol 44: 99–105

    Article  Google Scholar 

  • Robertson HM, Lampe DJ, Macleod EG (1992) A mariner transposable element from a lacewing. Nucleic Acids Res 20: 6409

    Article  PubMed  CAS  Google Scholar 

  • Rose AM, Snutch TP (1984) Isolation of the closed circular form of the transposable element Tc1 of Caenorhabditis elegans. Nature 311: 485–486

    Article  PubMed  CAS  Google Scholar 

  • Rose AM, Harris LJ, Mawji NR, Morris WJ (1985) Tc1 (Hin): a form of the transposable element Tc1 in Caenorhabditis elegans. Can J Biochem 63: 752–756

    Article  CAS  Google Scholar 

  • Rosenzweig B, Liao LW, Hirsh D (1983) Sequence of theC. elegans transposable element Tc1. Nucleic Acids Res 11:4201–4210

    Article  PubMed  CAS  Google Scholar 

  • Ruan K, Emmons SW (1984) Extrachromosomal copies of transposon Tc1 in the nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 81: 4018–4022

    Article  PubMed  CAS  Google Scholar 

  • Rushforth AM, Saari B, Anderson P (1993) Site-selected insertion of the transposon Tc1 into a Caenorhabditis elegans myosin light chain gene. Mol Cell Biol 13: 902–910

    PubMed  CAS  Google Scholar 

  • Ruvkun GB, Ambros V, Coulson A, Waterston RH, Sulston JE, Horvitz HR (1989) Molecular genetics of theCaenorhabditis elegans heterochronic gene lin-14. Genetics 121: 501–516

    PubMed  CAS  Google Scholar 

  • Ruvolvo V, Hill JE, Levitt A (1992) The Tc2 transposon of Caenorhabditis elegans has the structure of a self-regulated element. DNA cell Biol 11: 111–122

    Article  Google Scholar 

  • Schukkink RF, Plasterk RHA (1990) T the putative transposase of the C. elegans Tc1 transposon, has an N-terminal DNA binding domain. Nucleic Acids Res 18: 895–900

    Article  PubMed  CAS  Google Scholar 

  • Sedensky MM, Hudson SJ, Everson B, Morgan PG (1994) Identification of a manner-like repetitive sequence in C. elegans. Nucleic Acids Res 22: 1719–1723

    Article  PubMed  CAS  Google Scholar 

  • Sprunger SA (1992) The Caenorhabditis elegans alkali myosin light chain gene. PhD thesis, University of Wisconsin, Madison

    Google Scholar 

  • Sulston J, Du Z, Thomas K, Wilson R, Hiller L, Staden R, Halloran N, Green P, Thierry-Mieg-J, Qiu L, Dear S, Coulson A, Craxton M, Durbin R, Berks M, Metzstein M, Hawkins T, Ainscough R, Waterston R (1992) The C. elegans genome sequencing project: a beginning. Nature 356: 37–41

    Article  PubMed  Google Scholar 

  • Tausta SL, Klobutcher LA (1989) Detection of circular forms of eliminated DNA during macronuclear development in E. crassus. Cell 59: 1019–1026

    Article  PubMed  CAS  Google Scholar 

  • Tobler H (1986) The differentiation of germ and somatic cell lines in nematodes. In: Hennig W (ed) Germline-soma differentiation, results and problems in cell differentiation. Springer, Berlin Heidelberg New York, pp 1–69

    Google Scholar 

  • Van Luenen HGAM, Plasterk RHA (1994) Target site choice of the related transposable elements Tc1 and Tc3 of Caenorhabditis elegans. Nucleic Acids Res 22: 262–269

    Article  PubMed  Google Scholar 

  • Van Luenen HGAM, Colloms SD, Plasterk RHA (1993) Mobilization of quiet endogenous Tc3 transposons of Caenorhabditis elegans by forced expression of Tc3 transposase. EMBO J 12: 2513–2520

    PubMed  Google Scholar 

  • Van Luenen HGAM, Colloms SD, Plasterk RHA (1994) The mechanism of transposition of Tc3 in Caenorhabditis elegans. Cell 79: 293–301

    Article  PubMed  Google Scholar 

  • Vos JC, Plasterk RHA (1994) Tc1 transposase ofCaenorhabditis elegans is an endonuclease with a bipartite DNA-binding domain. EMBO J 13: 6125–6132

    PubMed  CAS  Google Scholar 

  • Vos JC, Van Luenen HGAM, Plasterk RHA (1993) Chacracterization of the Caenorhabditis elegans Tc1 transposase in vivo and in vitro. Genes Dev 7: 1244–1253

    Article  PubMed  CAS  Google Scholar 

  • Waterston R, Martin C, Craxton M, Huynh C, Coulson A, Hiller L, Durbin R, Green P, Shownkeen R, Halloran N, Metzstein M, Hawkins T, Wilson R, Berks M, Thierry-Mieg J, Sulston J (1992) A survey of expressed genes inCaenorhabditis elegans. Nature Gen 1: 114–123

    Article  CAS  Google Scholar 

  • Williams BD, Schrank B, Huynh C, Shownkeen R, Waterston RH (1992) A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics 131: 609–624

    PubMed  CAS  Google Scholar 

  • Williams K, Doak TG, Herrick G (1993) Developmental precise excision of Oxytrichatrifallax telomere- bearing elements and formation of cirlces closed by a copy of the flanking target duplication. EMBO J 12:4593–4601

    PubMed  CAS  Google Scholar 

  • Wilson R, Ainscough R, Anderson K, Baynes C, Berks M, Bonfield J, Burton J, Connell M, Copsey T, Cooper J, Coulson A, Craxton M, Dear S, Du Z, Durbin R, Favello A, Fraser A, Fulton L, Gardner A, Green P, Hawkins T, Hiller L, Jier M, Johnson L, Jones M, Kershaw J, Kirsten J, Laisster N, Latreille P, Lightning J, Lloyd C, Mortimore B, O’Callaghan M, Parsons JT, Percy C, Rifken L, Roopra A, Saunders D, Shownkeen R, Sims M, Smaldon N, Smith A, Smith M, Sonnhammer E, Staden R, Sulston J, Thierry Mieg J, Thomas K, Vaudin M, Vaughan K, Waterston R, Watson A, Weinstock L, Wilkinson-Sproat J, Wohldman P (1994) 2.2 Mb of contiguous nucleotide sequence from chromosome III of C.elegans. Nature 368: 32–38

    Article  PubMed  CAS  Google Scholar 

  • Yuan J, Finney M, Tsung N, Horvitz HR (1991) Tc4, aCaenorhabditis elegans transposable element with an unusual fold-back structure. Genetics 88: 3334–3338

    CAS  Google Scholar 

  • Zwaal RR, Broeks A, van Meurs J, Groenen JTM, Plasterk RHA (1993) Target-selected gene inactivation incaenorhabditis elegans by using a frozen transposon insertion mutant bank. Proc Natl Acad Sci USA 90: 7431–7435

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plasterk, R.H.A. (1996). The Tc1/mariner Transposon Family. In: Saedler, H., Gierl, A. (eds) Transposable Elements. Current Topics in Microbiology and Immunology, vol 204. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-79795-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-79795-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-79797-2

  • Online ISBN: 978-3-642-79795-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics