Skip to main content

Part of the book series: Research Notes in Neural Computing ((NEURALCOMPUTING,volume 4))

Abstract

The neural representation of reaching movements in the motor cortex of the monkey is discussed with respect to the coding of the direction of movement in the activity of single cells and neuronal populations. This code is then used to monitor the processing of directional information in various contexts involving delayed movements or directional transformations. Finally, some implications of these findings for the role of the motor cortex in planning and execution of reaching movements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, G.E. and Crutcher, M.D. (1990a) Preparation for movement: neural representation of intended direction in three motor areas of the monkey. J. Neurophysiol., 64: 133–150.

    Google Scholar 

  • Alexander, G.E. and Crutcher, M.D. (1990b) Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey. J. Neurophysiol., 64: 164–178.

    Google Scholar 

  • Caminiti, R., Johnson, P.B., Urbano, A. (1990) Making arm movements within different parts of space: Dymanic aspects in the primate motor cortex. J. Neurosci., 10: 2039–2058.

    Google Scholar 

  • Caminiti, R., Johnson, P.B., Galli, C., Ferraina, S., Burnod, Y., Urbano, A. (1991) Making arm movements within different parts of space: the premotor and motor cortical representation of a coordinate system for reaching at visual targets. J. Neurosci., 11: 1182–1197.

    Google Scholar 

  • Chen, D.-F., Hyland, B., Maier, V., Palmeri, A., Wiesendanger, M. (1991) Comparison of neural activity in the supplementary motor area and in the primary motor cortex in monkeys. Somatosensory Motor Res., 8: 27–44.

    Article  Google Scholar 

  • Cheney, P.D. and Fetz, E.E. (1980) Functional classes of primate corticomotoneuronal cells and their relation to active force. J. Neurophysiol., 44: 773–791.

    Google Scholar 

  • Cooper, S.E., Martin, J.H., Sybirska, E., Brennan, J., Ghez, C. (1989) Effects of motor cortex inactivation on forelimb motor control in the cat. Soc. Neurosci. Abstr., 15: 789.

    Google Scholar 

  • Darian-Smith, C., Darian-Smith, I., Cheema, S.S. (1990) Thalamic projections to sensorimotor cortex in the macaque monkey: use of multiple retrograde fluorescent tracers. J. Comp. Neurol., 299: 17–46.

    Article  Google Scholar 

  • Dum, R.P. and Strick, P.L. (1991) The origin of corticospinal projections from premotor areas in the frontal lobe. J. Neurosci., 11: 667–689.

    Google Scholar 

  • Eguibar, J.R., Quevedo, J., Jiménez, I., Rudomin, P. (1991) Selective modulation of the PAD of single la and lb afferents produced by surface stimulation of the motor cortex in the cat. Soc. Neurosci. Abstr., 17: 1024.

    Google Scholar 

  • Evarts, E.V. (1966) Pyramidal tract activity associated with a conditioned hand movement in the monkey. J. Neurophysiol, 29: 1011–1027.

    Google Scholar 

  • Evarts, E.V. (1981) Motor cortex and voluntary movement. In Handbook of Physiology, sect. 1, vol. II, part 2, J.M. Brookhart, V.B. Mountcastle, V.B. Brooks, S.R. Geiger, Amer. Physiol. Soc., Bethesda, MD, pp. 1083–1120.

    Google Scholar 

  • Favilla, M., Hening, W., Ghez, C. (1989) Trajectory control in targeted force impulses. VI. Independent specification of response amplitude and direction. Exp. Brain Res., 75: 280–294.

    Article  Google Scholar 

  • Fetz, E.E. (1984) Functional organization of motor and sensory cortex: symmetries and parallels. In Dynamic aspects of neocortical function, G.M. Edelman, W.M. Cowan and W.E. Gall (eds) Wiley, New York, pp. 453–473.

    Google Scholar 

  • Fortier, P.A., Kalaska, J.F., Smith, A.M. (1989) Cerebellar neuronal activity related to whole-arm reaching movements in the monkey. J. Neurophysiol., 62: 198–211.

    Google Scholar 

  • Georgopoulos, A.P. (1990) Neurophysiology and reaching. In Attention and Performance XIII, M. Jeannerod (ed), Lawrence Erlbaum, Hillsdale, NJ, pp. 227–263.

    Google Scholar 

  • Georgopoulos, A.P., Caminiti, R., Kalaska, J.F., Massey, J.T. (1983) Spatial coding of movement: A hypothesis concerning the coding of movement direction by motor cortical populations. Exp. Brain Res. Suppl., 7: 327–336.

    Google Scholar 

  • Georgopoulos, A.P., Crutcher, M.D., Schwartz, A.B. (1989a) Cognitive spatial motor processes. 3. Motor cortical prediction of movement direction during an instructed delay period. Exp. Brain Res., 75: 183–194.

    Article  Google Scholar 

  • Georgopoulos, A.P. and Grillner, S. (1989) Visuomotor coordination in reaching and locomotion. Science, 245: 1209–1210.

    Article  Google Scholar 

  • Georgopoulos, A.P., Kalaska, J.F., Caminiti, R. and Massey, J.T. (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci., 2: 1527–1537.

    Google Scholar 

  • Georgopoulos, A.P., Kalaska, J.F., Crutcher, M.D., Caminiti R., Massey, J.T. (1984) The representation of movement direction in the motor cortex: Single cell and population studies. In Dynamic aspects of neocortical function, G.M. Edelman, W.M. Cowan and W.E. Gall (eds) Wiley, New York, pp. 501–524.

    Google Scholar 

  • Georgopoulos, A.P., Kettner, R.E. and Schwartz, A.B. (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of thedirection of movement by a neuronal population. J. Neurosci., 8: 2928–2937.

    Google Scholar 

  • Georgopoulos, A.P., Lurito, J., Petrides, M., Schwartz, A.B., Massey, J.T. (1989) Mental rotation of the neuronal population vector. Science, 243: 234–236.

    Article  Google Scholar 

  • Georgopoulos, A.P. and Massey, J.T. (1987) Cognitive spatial-motor processes. 1. The making of movements at various angles from a stimulus direction. Exp. Brain Res., 65: 361–370.

    Article  Google Scholar 

  • Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E. (1986) Neuronal population coding of movement direction. Science, 233: 1416–1419.

    Article  Google Scholar 

  • Gibson, A.R., Houk, J.C., Kohlerman, N.J. (1985) Relation between red nucleus discharge and movement parameters in trained macaque monkeys. J. Physiol. (London), 358: 551–570.

    Google Scholar 

  • Gelfand, I.M., Orlovsky, G.N., Shik, M.L. (1988) Locomotion and scratching in tetrapods. In: Neural control of rhythmic movements in vertebrates, Cohen, A.H., Rossignol, S., Grillner, S. (eds), Wiley, New York, pp. 167–199.

    Google Scholar 

  • Grillner, S., Buchanan, J.T., Walli, P., Brodin, L. (1988) Neural control of locomotion in lower vertebrates: from behavior to ionic mechanisms. In: Neural control of rhythmic movements in vertebrates, Cohen, A.H., Rossignol, S., Grillner, S. (eds), Wiley, New York, pp. 1–40.

    Google Scholar 

  • Hening, W., Favilla, M., Ghez, C. (1988) Trajectory control in targeted force impulses. V. Gradual specification of response amplitude. Exp. Brain Res., 71: 116–128.

    Article  Google Scholar 

  • Kalaska, J.F. (1988) The representation of arm movements in postcentral and parietal cortex. Can. J. Physiol. Pharmacol., 66: 455–463.

    Article  Google Scholar 

  • Kalaska, J.F., Caminiti, R., Georgopoulos, A.P. (1983) Cortical mechanisms related to the direction of two-dimensional arm movements: Relations in parietal area 5 and comparison with motor cortex. Exp. Brain Res., 51: 247–260.

    Article  Google Scholar 

  • Kalaska, J.F., Cohen, D.A.D., Hyde, M.L., Prud’homme, M. (1989) A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. J. Neurosci., 9: 2080–2102.

    Google Scholar 

  • Kane, S.A., Goodkin, H.P., Keating, J.G., Thach, W.T. (1989) Incoordination in attempted reaching and pinching after inactivation of cerebellar dentate nucleus. Soc. Neurosci. Abstr., 15: 52.

    Google Scholar 

  • Karluk, D. and Ebner, T.J. (1989) Spatial representation of movement distance and direction in the premotor cortex. Soc. Neurosci. Abstr., 15: 787.

    Google Scholar 

  • Lemon, R.N., Mantel, G.W.H., Muir, R.B. (1986) Corticospinal facilitation of hand muscles during voluntary movement in the conscious monkey. J. Physiol. (London) 381: 497–527.

    Google Scholar 

  • Lundberg, A. (1979) Integration in a propriospinal motor centre controlling the forelimb in the cat. In: Integration in the Nervous System, Asanuma, H. and Wilson, V.J. (eds), Igaku-Shoin, Tokyo, pp. 47–69.

    Google Scholar 

  • Lurito, J.L., Georgakopoulos, T., Georgopoulos, A.P. (1991) Cognitive spatial-motor processes. 7. The making of movements at an angle from a stimulus direction: studies of motor cortical activity at the single cell and population levels. Exp. Brain Res., in press.

    Google Scholar 

  • Mountcastle, V.B., Lynch, J.C., Georgopoulos, A.P., Sakata, H., and Acuna, C. (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J. Neurophysiol., 38: 871–908.

    Google Scholar 

  • Park, S.-K., Wang, J.-J., Kim, J.H., Ebner, T.J. (1987) Movement fields of neurons in the premotor cortex of the primate. Soc. Neurosci. Abstr., 13: 1095.

    Google Scholar 

  • Park, S.-K., Kim, J.H., Ebner, T.J. (1988) Evaluation of motor parameters in the premovement discharge of premotor cortical neurons during two-dimensional movements. Soc. Neurosci. Abstr., 14: 343.

    Google Scholar 

  • Pellizzer, G., Massey, J.T., Bains, H., Georgopoulos, A.P. (1991) Are there common processing constraints for visuomotor and perceptual mental rotations? Soc. Neurosci. Abstr., 17: 1226.

    Google Scholar 

  • Ricci, G., Doane. B., Jasper, H. (1957) Microelectrode studies of conditioning: technique and preliminary results. In: Volume publii a Voccasion du IV6 Congris International d Electro-enciphalographie et de Neurophysiologie clinique et de la VllIe Reunion de la Ligue internationale contre I’Epilepsie, pp. 401–415.

    Google Scholar 

  • Rosenbaum, D. A. (1980) Human movement initiation: specification of arm, direction, and extent. J. Exp. Psychol.: General, 109: 444–474.

    Article  Google Scholar 

  • Rudomin, P. (1990a) Presynaptic control of synaptic effectiveness of muscle spindle and tendon organ afferents in the mammalian spinal cord. In: The segmental motor control, Binder, M. and Mendell, L.M. (eds), Oxford Univ. Press, New York, pp. 349–380.

    Google Scholar 

  • Rudomin, P. (1990b) Presynaptic inhibition of muscle spindle and tendon organ afferents in the mammalian spinal cord. Trends in Neurosci, 13: 499–505.

    Article  Google Scholar 

  • Rudomin, P., Solodkin, M., Jiménez, I. (1986) PAD and PAH response patterns of group la- and lb-fibers to cuteneous and descending inputs in the cat spinal cord. J. Neurophysiol., 56: 987–1006.

    Google Scholar 

  • Schwartz, A.B. and Georgopoulos, A.P. (1987) Relations between the amplitude of 2-dimensional arm movements and single cell discharge in primate motor cortex. Soc. NeuroscL Abstr., 13: 244.

    Google Scholar 

  • Schwartz, A.B., Kettner, R.E., Georgopoulos, A.P. (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. J. Neurosci., 8: 2913–2927.

    Google Scholar 

  • Shepard, R.N. and Cooper, L. (1982) Mental images and their transformations, MIT Press, Cambridge MA.

    Google Scholar 

  • Smyrnis, N., Ashe, J., Taira, M., Lurito, J.T. and Georgopoulos, A.P. (1991) Motor cortical cell activity in a memorized delay task. Soc. NeuroscL Abstr., 17: 308.

    Google Scholar 

  • Soechting, J.F. and Flanders, M. (1989) Sensorimotor representations for pointing to targets in three-dimensional space. J. Neurophysiol, 62: 582–594.

    Google Scholar 

  • Soechting, J.F. and Lacquaniti, F. (1981) Invariant characteristics of a pointing movement in man. J. Neurosci., 1: 710–720.

    Google Scholar 

  • Steinmetz, M.A., Motter, B.C., Duffy, C.J., Mountcastle, V.B. (1987) Functional properties of parietal visual neurons: Radial organization of directionalities within the visual field. J. Neurosci., 7: 177–191.

    Google Scholar 

  • Taira, M., Ashe, J., Smyrnis, N., Georgopoulos, A.P. (1991) Motor cortical cell activity in a visually guided isometric force task. Soc. NeuroscL Abstr., 17: 308.

    Google Scholar 

  • Tanji, J. and Evarts, E.V. (1976) Anticipatory activity of motor cortex neurons in relation to direction of an intended movement. J. Neurophysiol., 39: 1062–1068.

    Google Scholar 

  • Tanji, J. and Kurata, K. (1985) Contrasting neuronal activity in supplementary and precentral motor cortex of monkeys. I. Responses to instructions determining motor responses to forthcoming signals of different modalities. J. Neurophysiol., 53: 129–141.

    Google Scholar 

  • Thach, W.T. (1978) Correlation of neural discharge with pattern and force of muscular activity, joint position, and direction of intended next movement in motor cortex and cerebellum. J. Neurophysiol., 41: 654–676.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Georgopoulos, A.P. (1993). Cortical Representation of Intended Movements. In: Rudomin, P., Arbib, M.A., Cervantes-Pérez, F., Romo, R. (eds) Neuroscience: From Neural Networks to Artificial Intelligence. Research Notes in Neural Computing, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78102-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78102-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56501-7

  • Online ISBN: 978-3-642-78102-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics