Skip to main content

Mineral Deposits and Metallogeny: Indicators of Earth’s Evolution

  • Chapter
Early Organic Evolution

Abstract

Major types of mineral deposits exhibit distinct changes in composition and geological setting from Archean to Recent time. These changes include extinctions of ancient types, appearances of new ones, proliferations, and diversifications, and thus are comparable to those seen in biological evolution. The changes are responses to evolutionary changes in the earth’s asthenosphere, lithosphere, hydrosphere, atmosphere and biosphere. All these reflect changing geotectonic environments, and consequently must be considered and explained in conjunction with global tectonic evolution, to which they provide additional, independent guides.

Explanations for the evolutionary changes in the type of deposits are conjectural due to the complexity and imperfect understanding of the processes that form many of them. However, changes in magmatic deposits of Cr, Ni — Cu, and Pt-Group elements may result from changes through time in subcrustal conditions and processes deep within the earth; e.g. changes in core/mantle compositi ns and boundaries, heat flux, or depth and degree of partial melting. Since about 1 Ga B.P., lithospheric evolution by plate tectonic processes, from initial oceanic crust across continent-margin environments to final, stabilized continental crust, has been paramount and has governed the nature of the hydrothermal systems that form many metalliferous deposits. It has thereby resulted in sequential evolutionary formation of many different types of deposits in these differing supracrustal settings.

An analogous, but temporally much longer and global evolution of lithosphere may be represented by sequential changes from Early to Late Archean greenstone belts, then through latest Archean plutonism and crustal stabilization to the diverse continental crustal tectonic environments of Proterozoic time. This longer term lithospheric evolution also controlled the development of differing types of deposits during the long span of Precambrian time. A remarkable absence of certain earlier types and the appearance and proliferation of certain new ones, or variants, in Mid-Proterozoic time suggests widespread, even global crustal rifting -perhaps due to global expansion.

Atmospheric-hydrospheric oxygenation, probably due to biogenic evolution in Lower Proterozoic time, profoundly altered the nature of ferruginous sedimentary rocks and their contained iron deposits. Primitive algal forms apparently played a role in formation of the great Au deposits of the Witwatersrand, and the appearance of terrestrial organisms in Mid-Paleozoic time created an environment favorable for generation of certain U deposits.

If ore deposits of different types have developed in response to evolutionary changes on the earth, it becomes imperative to explore for them not only in the proper spatial or geological environment but also in the proper time dimension, or age of rock. It would be disastrous to seek trilobites in Cretaceous marine shales or dinosaur bones in Silurian continental clastic sediments. Time, as expressed by geologic age, is of qual importance in mineral exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler HH (1974) Concepts of uranium-ore formation in reducing environments in sandstones and other sediments. Formation of uranium deposits. IAEA, Vienna, pp 141–168

    Google Scholar 

  • Alexandrov EA (1973) The Precambrian banded iron formations of the Soviet Union. Econ Geol 68(7): 1039– 1062

    Google Scholar 

  • Andersson A, Dahlman B, Gee D (1983) Kerogen and uranium resources in the Cambrian Alum Shales of the Billingen-Fahlbygden and Narke areas, Sweden. Geol Foren Stockholm Forh 104: 197–209

    Google Scholar 

  • Anderson CA, Nash JT (1972) Geology of the massive sulfíde deposits at Jerome, Arizona: a reinterpretation. Econ Geol 67 (7): 845–863

    Google Scholar 

  • Andrews AJ (1986) Silver vein deposits: summary of recent research. Can J Earth Sci 23: 1460–1462

    Google Scholar 

  • Anhaeusser CR, Viljoen MJ (1986) Archean metallogeny of southern Africa. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, I. Geol Soc S Afr, Johannesburg, pp 33–42

    Google Scholar 

  • Argall GO Jr (ed) (1976) Designing Udokan open pit mine. World Mining, July 1976, Miller Freeman, Brooklyn, New York, pp 51–52

    Google Scholar 

  • Baker A, Clayton RL (1968) Massive sulfide deposits of Bagdad District, Yavapai County, Arizona. In: Ridge JD (ed) Ore deposits of the United States 1933-1967 (Graton-Sales volume). Am Inst Min Metall Petrol Eng, pp1311–1327

    Google Scholar 

  • Bates TF, Strahl EO (1958) Mineralogy and chemistry of uranium-bearing black shales. In: 2nd UN Int Conf, Peaceful uses of atomic energy, Geneva 1958, vol2, pp 407–411

    Google Scholar 

  • Bavinton OA (1981) The nature of sulfidic metasediments at Kambalda and their broad relationship with associated ultramafic rocks and nickel ores. Econ Geol 76:1606–1628

    Google Scholar 

  • Bayley RW, James HL (1973) Precambrian iron formation of the United States. Econ Geol 68(7):934–959

    Google Scholar 

  • Bell K, Blenkinsop J (1987) Archean depleted mantle: evidence from Nd and Sr initial isotopic ratios of carbonatites. Geochim Cosmochim Acta 51:291–298

    Google Scholar 

  • Bell RT (1978) Uranium in black shales -a review. In: Kimberley MM (ed) Short course in uranium deposits: their mineralogy and origin. Mineral Assoc Can Short Course Handb 3: 307–329

    Google Scholar 

  • Bernier LR, MacLean WH (1989) Auriferous chert, banded iron formation, and related volcanogenic hydrothermal alteration, Atik Lake, Manitoba. Can J Earth Sci 26 (12):2676–2690

    Google Scholar 

  • Berning J (1986) The Rossing uranium deposit, South West Africa/Namibia. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, II. Geol Soc S Afr, Johannesburg, pp 1819–1832

    Google Scholar 

  • Berry LG, Jambor JL (1971) The silver-arsenide deposits of the Cobalt-Gowganda region, Ontario. Can Mineral 11:429

    Google Scholar 

  • Bilibin YA (1968) Metallogenetic provinces and metallogenic epochs. In: Alexandrov EA (ed) Geology bulletin (English Transl of 1955 Pap Geotekhizdat, Moscow). Queens College, Flushing, NY, 35 pp

    Google Scholar 

  • Black R (1980) The Precambrian of West Africa. Episodes 4:3–8

    Google Scholar 

  • Boyum BH, Hartviksen RC (1970) General geology and ore grade control at the Sherman Mine, Temagami, Ontario. Can Min Metall Bull 63(701): 1059–1068

    Google Scholar 

  • Broken Hill Proprietary (B.H.R) Staff (1975) Koolyanobbing iron ore deposits. In: Knight CL (ed) Economic geology of Australia and Papua-New Guinea, I. Metals. Australas Inst Min Metall, pp 940–942

    Google Scholar 

  • Brown AC (1971) Zoning in the White Pine copper deposit, Ontonagon County, Michigan. Econ Geol 66:543– 573

    Google Scholar 

  • Brown AC, Chartrand FM (1983) Stratiform copper deposits and interaction with coexisting atmosphere, hydrosphere, biosphere and lithosphere. Precambrian Res 20:533–542

    Google Scholar 

  • Buchan R, Blowes JH (1968) Geology and mineralogy of a millerite nickel ore deposit-Marbridge No. 2 Mine, Malartic, Quebec. Canada. Can Min Metall Bull 61 (672):529–534

    Google Scholar 

  • Byers AR. Kirkland SJT, Pearson WJ (1965) Geology and mineral deposits of the Flin Flon area, Saskatchewan. Sask Dep Mineral Resourc Rep 62: 95 pp

    Google Scholar 

  • Cameron EN (1980) Evolution of the Lower Critical Zone, central sector, eastern Bushveld Complex and its chromite deposits. Econ Geol 75:845–871

    Google Scholar 

  • Cerny P, Trueman DL (1978) Distribution and petrogenesis of lithium pegmatites in the Western Superior Province of the Canadian Shield. Energy 3: 365–377

    Google Scholar 

  • Christiansen RL, Lipman PW (1972) Cenozoic volcanism and plate tectonic evolution of the western United States. 2, Late Cenozoic. Philos Trans R Soc London Ser A271, 1213:249–284

    Google Scholar 

  • Clay AN (1986) The stratigraphy of the Malmani dolomite subgroup in the Carletonville Area, Transvaal: genetic implications for lead-zinc mineralization. In: Anhaeusser CR, Maske S (eds) Mineral deposits of South Africa, I. Geol Soc S Afr, Johannesburg, pp 853–860

    Google Scholar 

  • Cloud P (1972) A working model of the primitive earth. Am J Sci 272:537–548

    Google Scholar 

  • Cloud P (1973) Paleoecological significance of the banded iron-formation. Econ Geol 68(7): 1135–1143

    Google Scholar 

  • Coad PR (1977) Nickel sulphide deposits associated with ultramafic rocks of the Abitibi Belt and economic potential of mafic-ultramafic intrusions. Ont Geol Surv Open File Rep 5232:105 pp

    Google Scholar 

  • Colvine AC, Sutherland IG (1979) Early Precambrian porphyry deposits. Summary of field work, 1979. Ont Geol Surv Misc Pap 90:230–243

    Google Scholar 

  • Colvine AC, Fyon JA, Heather KB, Marmont S, Smith PM, Troop DG (1988) Archean lode gold deposits in Ontario. Ont Geol Surv Misc Pap 139: 136 pp

    Google Scholar 

  • Condie KC (1982) Plate-tectonics model for Proterozoic continental accretion in the southwestern United States. Geology 10:37–41

    Google Scholar 

  • Correia Neves JM, Pedrosa AC, Monteiro RLBP, Scliar C (1983) Study of the geology and petrography of the pegmatite region of Virgem da Lapa; Coronel Murta, Minas Gerais. In: Geol Precambrian Bol Soc Brasil Geol, pp 100–114 (in Portuguese with English Summary)

    Google Scholar 

  • Cotterill P (1969) The chromite deposits of Selukwe, Rhodesia. In: Wilson HDB (ed) Magmatic ore deposits. Econ Geol Monogr 4: 154–186

    Google Scholar 

  • Crawford J, Hoagland AD (1968) The Mascot-Jefferson City zinc district, Tennessee. In: Ridge JD (ed) Ore deposits of the United States 1933-1967 (Graton-Sales volume). Am Inst Min Metall Petrol Eng, pp 242–256

    Google Scholar 

  • Davies DN, Urie JG (1956) The Bomvu Ridge haematite deposits. Swaziland Geol Surv Spec Rep 3:23 pp

    Google Scholar 

  • Davies JF, Luhta LE (1978) An Archean “porphyry-type” disseminated copper deposit, Timmins, Ontario. Econ Geol 73:383–396

    Google Scholar 

  • Davison I, Texeira LBG, Silva MG, Rocha Neto MB, Matos FMV (1988) The Rio Itapicuru greenstone belt, Bahia, Brazil: structure and stratigraphical outline. Precambrian Res 42: 1–17

    Google Scholar 

  • Deans T (1966) Economic mineralogy of African carbonatites. In: Tuttle OF, Gittins J (eds) Carbonatites. John Wiley & Sons, New York, 591 pp

    Google Scholar 

  • DeWitt E, Redder JA, Wilson AB, Buscher D (1986) Mineral resource potential and geology of the Black Hills National Forest, South Dakota and Wyoming. U S Geol Surv Bull 1580: 135 pp

    Google Scholar 

  • Dorr II JVN (1963) Geology and ore deposits of the Itabira district, Minas Gerais, Brazil. U S Geol Surv Prof Pap341-C:110

    Google Scholar 

  • Dorr II JVN (1973) Iron-formation in South America. Econ Geol 68 (7):1005–1022

    Google Scholar 

  • Dubuc F (1966) Geology of the Adams Mine. Can Min Metall Bull 59(646): 176–181

    Google Scholar 

  • Eupene GS, Fee PH, Colville RG (1975) Ranger One uranium deposits. In: Knight CL (ed) Economic geology of Australia and Papua New Guinea, 1. Metals. Australas Inst Min Metall, pp 308–317

    Google Scholar 

  • Evans EL (1986) Saskatchewan unconformity-associated and sedimentary-hosted deposits of Helikian Age. In: Evans EL (ed) Uranium deposits of Canada. Can Inst Min \Metall, pp 123–262

    Google Scholar 

  • Evoy EF (1986) The Gunnar uranium deposit. In: Evans EL (ed) Uranium deposits of Canada. Can Inst Min Metall, pp 250–262

    Google Scholar 

  • Faure G (1964) The age of the Duluth Gabbro complex and the Endion sill by whole-rock Rb -Sr method. MIT 12th Annu Prog Rep, pp 255–257

    Google Scholar 

  • Ferguson SA, Buffam BSW, Carter OF, Griffis AT, Holmes TC, Longley CS (1968) Geology and ore deposits of Tisdale Township, District of Cochrane, Ontario. Ont Dep Mines Geol Rep GR 58:117 pp

    Google Scholar 

  • Fleischer VD, Garlick WG, Haldane R (1976) Geology of the Zambian Copperbelt. In: Wolf KH (ed) Handbook of stratabound and stratiform ore deposits, vol 6. Elsevier, Amsterdam, pp 223–321

    Google Scholar 

  • Foster RP, Wilson JF (1984) Geological setting of Archean gold deposits in Zimbabwe. In: Foster RP (ed) Gold ’82. The geology, geochemistry and genesis of gold deposits. Balkema, Rotterdam, 753 pp

    Google Scholar 

  • Franklin JM, Thorpe RI (1982) Comparative metallogeny of the Superior, Slave and Churchill provinces. Geol Assoc Can Spec Pap 25: 3–90

    Google Scholar 

  • Franklin JM, Lydon JW, Sangster DF (1981) Volcanic-associated massive sulfide deposits. Econ Geol 75th Anniversary Vol, pp485–627

    Google Scholar 

  • Friesen RG, Pierce GA, Weeks RM (1982) Geology of the Geco base metal deposit at Manitouwadge, Ontario, Canada. In: Hutchinson RW, Spence CD, Franklin JM (eds) Precambrian sulphide deposits (H. S. Robinson memorial volume). Geol Assoc Can Spec Pap 25: 343–364

    Google Scholar 

  • Frietsch R, Papunen H, Vokes FM (1979) The ore deposits in Finland, Norway, and Sweden -a review. Econ Geol 74:975–1001

    Google Scholar 

  • Fripp REP (1976) Stratabound gold deposits in Archean banded iron-formation, Rhodesia. Econ Geol 71: 58–75

    Google Scholar 

  • Garrels RM, Perry EA, Mackenzie FT (1973) Genesis of Precambrian iron-formations and the development of atmospheric oxygen. Econ Geol 68: 1173 -1179

    Google Scholar 

  • Gevers TW (1936) Phases of mineralization in Namaqua-land pegmatites. Geol Soc S Afr Trans 39:331–378

    Google Scholar 

  • Gibbons W (1979) Gold and Precambrian iron formation in the Northwest Territories. In: Morton RD (ed) Proc Gold Worksh, Yellowknife, NWT. Yellowknife Gold Worksh Commun, pp 258–287

    Google Scholar 

  • Gibbs AK, Barron CN (1983) The Guiana Shield reviewed. Episodes 1983:7–14

    Google Scholar 

  • GilmourP, Still AR (1968) The geology of the Iron King Mine. In: Ridge JD (ed) Ore deposits of the United States 1933-1967 (Graton-Sales volume). Am Inst Min Metall Petrol Eng, New York, pp 1238–1257

    Google Scholar 

  • Giovenazzo D, Picard C, Guha J (1989) Tectonic setting of Ni -Cu-PGE deposits in the central part of the Cape Smith Belt. Geosci Can 16(3): 134–136

    Google Scholar 

  • Glikson AY (1979) The missing Precambrian crust. Geology 7:449–454

    Google Scholar 

  • Gole MJ, Barnes SJ, Hill RET (1989) The geology of the Agnew nickel deposit, Western Australia. Can Min Metall Bull 82(929):46–56

    Google Scholar 

  • Goodwin AM (1962) Structure, stratigraphy and origin of iron formation, Michipocoton area, Algoma District, Ontario, Canada. Geol Soc Am Bull 73: 561–586

    Google Scholar 

  • Goulevitch J (1975) Warrego copper-gold orebody. In: Knight CL (ed) Economic geology of Australia and Papua New Guinea, I. Metals. Australas Inst Min Metall, pp 430–436

    Google Scholar 

  • Gresham JJ, Loftus-Hills GD (1981) The geology of the Kambalda nickel field, Western Australia. Econ Geol 76:1373–1416

    Google Scholar 

  • Gross GA (1966) Principle types of iron-formations and derived ores. Can Min Metall Bull 59:150–153

    Google Scholar 

  • Gross GA (1968) Geology of iron deposits in Canada, 3. Iron ranges of the Labrador geosyncline. Geol Surv Can Econ Geol Rep 22: 22 pp

    Google Scholar 

  • Gross GA (1986) The metallogenic significance of iron formation and related strata. Geol Surv India 28: 92–108

    Google Scholar 

  • Gross WH (1968) Evidence for a modified placer origin for auriferous conglomerates, Canavieiras, Jacobina, Brazil. Econ Geol 63:271–276

    Google Scholar 

  • Groves DI, Batt WD (1984) Spatial and temporal variations of Archean metallogenic associations in terms of evolution of granitoid-greenstone terranes with particular emphasis on the Western Australian shield. In: Kroner A, Hanson GN, Goodwin AM (eds) Archean geochemistry: the origin and evolution of the Archean continental crust. Springer, Berlin Heidelberg New York, pp 73–98

    Google Scholar 

  • Groves DI, Phillips GN (1987) The genesis and tectonic control on Archean gold deposits of the Western Australian shield -a metamorphic replacement model. Ore Geol Rev 2:287–322

    Google Scholar 

  • Gruszczyk H (1967) The genesis of the Silesian-Kracow deposits of lead-zinc ores. In: Brown JS (ed) Genesis of stratiform lead-zinc-barite-fluorite deposits in carbonate rocks. Econ Geol Mono 3, Econ Geol Publ, Lancaster, Penn, pp 169–177

    Google Scholar 

  • Gustafson LB, Titley SR (1978) Porphyry copper deposits of the southwestern Pacific islands and Australia -preface. Econ Geol 73 (5): 597–599

    Google Scholar 

  • Hagni RD (1988) Mineralogy, origin and potential for discovery of Creta, Oklahoma copper shale-type deposits in Oklahoma, Texas and Kansas. In: Kisvarsanyi G, Grant SK (eds) N Am Conf Tectonic control of ore deposits and the vertical and horizontal extent of ore systems. Proc Vol, Univ Missouri, Rolla, pp 455–467

    Google Scholar 

  • Hallbauer DK (1986) The mineralogy and geochemistry of Witwatersrand pyrite, gold, uranium and carbonaceous matter. In: Anhaeusser CR, Maske S (eds) Mineral deposits of South Africa, I. Geol Soc S Afr, pp 731–752

    Google Scholar 

  • Hannington MD, Peter JM, Scott SD (1986) Gold in sea floor polymetallic sulfide deposits. Econ Geol 81: 1867–1883

    Google Scholar 

  • Harrison JE (1972) Precambrian Belt basin of northwestern United States, its geometry, sedimentation, and copper occurrences. Geol Soc Am Bull 83:1215–1240

    Google Scholar 

  • Harrison JE, Griggs AB, Wells JD (1974) Tectonic features of the Precambrian Belt Basin and their influence on post-Belt structures. U S Geol Surv Prof Pap 866: 15 pp

    Google Scholar 

  • Hayba DO, Bethke PM, Heald P, Foley NK (1985) Geologic, mineralogic and geochemical characteristics of volcanic-hosted epithermal precious-metal deposits. In: Berger BR, Bethke PM (eds) Reviews in economic geology, vol2: Geology and geochemistry of epithermal systems, vol 2. Econ Geol Publ House, Lancaster, pp129–167

    Google Scholar 

  • Haynes DW, Bloom MS (1987a) Stratiform copper deposits hosted by low energy sediments. III. Aspects of metal transport. Econ Geol 82:635–648

    Google Scholar 

  • Haynes DW, Bloom MS (1987b) Stratiform copper deposits hosted by low energy sediments. IV. Aspects of sulfide precipitation. Econ Geol 82: 875–893

    Google Scholar 

  • Hedstrom P, Simeonov A, Malmstrom L (1989) The Zinkgruvan ore deposit, south-central Sweden: a Proterozoic, proximal Zn -Pb -Ag deposit in distal volcanic facies. Econ Geol 84(5): 1235– 1261

    Google Scholar 

  • Hewitt JH (1967) Uranium and thorium deposits of southern Ontario. Ont Dep Mines Mineral Resource Circ 4:76pp

    Google Scholar 

  • Hewton RS (1982) Gayna River -a Proterozoic Mississippi Valley-type zinc-lead deposit. In: Hutchinson RW, Spence CD, Franklin JM (eds) Precambrian sulphide deposits (HS. Robinson memorial volume). Geol Assoc Can Spec Pap 25: 667–700

    Google Scholar 

  • Holl R, Maucher A (1976) The stratabound ore deposits in the eastern Alps. In: WolfKH (ed) Handbook of stratabound and stratiform ore deposits, vol 5. Elsevier, Amsterdam, pp 1–36

    Google Scholar 

  • Hoy LD, Ohmoto H (1989) Constraints for the genesis of red bed-associated stratiform Cu deposits from sulphur and carbon mass-balance relations. In: Boyle RW, Brown AC, Jefferson CW, Jowett EC, Kirkham RV (eds) Sediment-hosted stratiform copper deposits. Geol Assoc Can Spec Pap 36: 135–149

    Google Scholar 

  • Hulbert LJ, Von Gruenewaldt G (1985) Textural and compositional features of chromite in the Lower and Critical Zones of the Bushveld Complex south of Potgie-tersrus. Econ Geol 80(4): 872–895

    Google Scholar 

  • Huot D, Sattran V, Zida P (1986) Gold in the Birrimian greenstone belts of Burkino Faso, West Africa (Abstr). Terra Cognita 6:537

    Google Scholar 

  • Hutchinson RW (1955) Regional zonation of pegmatites at Ross Lake, NWT Geol Surv Can Bull 34:50pp

    Google Scholar 

  • Hutchinson RW (1973) Volcanogenic sulfide deposits and their metallogenic significance. Econ Geol 68(8): 1223 -1246

    Google Scholar 

  • Hutchinson RW (1980) Massive base metal sulphide deposits as guides to tectonic evolution. In: Strangway DW (ed) The continental crust and its mineral deposits. Geol Assoc Can Spec Pap 20:659–684

    Google Scholar 

  • Hutchinson RW (1981) Mineral deposits as guides to supracrustal evolution. In: O’Connell R, Fyfe WS (eds) Evolution of the Earth. AGU-GSA Geodyn Ser 5: 120–140

    Google Scholar 

  • Hutchinson RW (1984) Archean metallogeny: a synthesis and review. J Geodyn 1:339–358

    Google Scholar 

  • Hutchinson RW (1987) Metallogeny of Precambrian gold deposits: space and time relationships. Econ Geol 82: 1993–2007

    Google Scholar 

  • Hutchinson RW (1988) Metallogeny of Precambrian gold deposits: space and time relationships: a reply. Econ Geol 83(6): 1287–1288

    Google Scholar 

  • Hutchinson RW (1990) Precious metals in massive base metal sulfide deposits. Geol Rundsch 79: 241–263

    Google Scholar 

  • Hutchinson RW, Blackwell JD (1984) Time, crustal evolution and generation of uranium deposits. In: Capaldi G, De Vivo B, Ippolito R (eds) Uranium -geochemistry, mineralogy, geology, exploration and resources. Liguori, Naples, It, pp 89–100

    Google Scholar 

  • Hutchinson RW, Burlington JL (1984) Some broad characteristics of greenstone belt gold lodes. In: Foster RP (ed) Gold ’82. The geology, geochemistry and genesis of gold deposits. Balkema, Rotterdam, pp 339–372

    Google Scholar 

  • Hutchinson RW, Viljoen RP (1988) Re-evaluation of gold source in Witwatersrand ores. J S Afr Geol 91(2): 157–173

    Google Scholar 

  • Ireland KL (1986) The Winterveld (TCL) Chrome Mine Limited, eastern Bushveld Complex. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, II. Geol Soc S Afr, Johannesburg, pp 1183– 1188

    Google Scholar 

  • Irvine TN, Smith CH (1969) Primary oxide minerals in the layered series of the Muskox intrusion. In: Wilson HDB (ed) Magmatic ore deposits. Econ Geol Publ House, Lancaster, pp 76–94

    Google Scholar 

  • Jackson ED (1969) Chemical variation in co-existing chromite and olivene in chromitite zones of the Stillwater Complex. In: Wilson HDB (ed) Magmatic ore deposits. Econ Geol Publ House, Lancaster, pp 41–75

    Google Scholar 

  • Jacob RE, Corner B, Brynard HJ (1986) The regional geological and structural setting of the uraniferous granitic provinces of southern Africa. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, II. Geol Soc S Afr, Johannesburg, pp 1807–1818

    Google Scholar 

  • James HL (1954) Sedimentary facies of iron-formation. Econ Geol 49(3):235–294

    Google Scholar 

  • Johnson IR, Klingner GD (1975) The Broken Hill ore deposit and its environment. In: Knight CL (ed) Economic geology of Australia and Papua New Guinea, I. Metals. Australas Inst Min Metall, pp 476–490

    Google Scholar 

  • Kanasewich ER (1968) Precambrian rift: genesis of stratabound ore deposits. Science 161: 1002–1005

    Google Scholar 

  • Keppie JD, Boyle RW, Haynes SJ (1986) Turbidite-hosted gold deposits. Geol Assoc Can Spec Pap 32: 186 pp

    Google Scholar 

  • Kesse GO (1984) The occurrence of Gold in Ghana. In: Foster RP (ed) Gold ’82. The geology, geochemistry and genesis of gold deposits. Balkema, Rotterdam, pp 645–671

    Google Scholar 

  • Killick AM (1986) The Damba sulphide nickel deposits, Zimbabwe. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, I. Geol Soc S Afr, Johannesburg, pp 263–274

    Google Scholar 

  • Kimberley MM (1989 a) Nomenclature for iron formations. In: Wolf KH (ed) Ore geology reviews, vol 5. Elsevier, Amsterdam, pp 1–12

    Google Scholar 

  • Kimberley MM (1989b) Exhalative origins of iron formations. In: Wolf KH (ed) Ore geology reviews, vol 5. Elsevier, Amsterdam, pp 13–145

    Google Scholar 

  • Kinloch ED (1982) Regional trends in platinum group mineralogy of the Critical Zone of the Bushveld Comlex. Econ Geol 77: 1328–1347

    Google Scholar 

  • Kyle JR (1981) Geology of the Pine Point lead-zinc district. In: Wolf KH (ed) Handbook of stratabound and stratiform ore deposits, vol 9. Elsevier, Amsterdam, pp 643– 741

    Google Scholar 

  • Ladeira EA (1988) Metalogenia dos depositos de ouro do quadrilatero Ferrifero, Minas Gerais, chap 25. In: Schobbenhaus C, Coelho CES (eds) Principais depositos minerais do Brasil, III. Dep Nacl Prod Mineral, Bras, pp 301–376

    Google Scholar 

  • Lambert IB, Donnelly TH, Etminan H, Rowlands NJ (1984) Genesis of Late Proterozoic copper mineralization, Copper Claim, South Australia. Econ Geol 79(3):461–475

    Google Scholar 

  • Large RR (1975) Juno Gold-Bismuth Mine, Tennant Creek. In: Knight CL (ed) Economic geology of Australia and Papua New Guinea, I. Metals. Australas Inst Min Metall, pp 424–430

    Google Scholar 

  • Leube A, Hirdes W, Mauer R, Kesse GO (1990) The Early Proterozoic Birimian Supergroup of Ghana and some aspects of its associated gold mineralization. Precam-brian Res 46: 139–165

    Google Scholar 

  • Lipman PW (1981) Volcano-tectonic setting of Tertiary ore deposits, southern Rocky Mountains. In: Dickinson WR, Payne WD (eds) Relations of tectonics to ore deposits in the southern Cordillera. Ariz Geol Soc Dig, pp 199–214

    Google Scholar 

  • Lipman PW, Prostka HJ, Christiansen RL (1972) Cenozoic volcanism and plate tectonic evolution of the western United States: I. Early and Middle Cenozoic. Philos Trans R Soc London Ser A271, 1213:217–248

    Google Scholar 

  • Ljunggren P, Meyer HC (1964) The copper mineralization in the Corocoro Basin, Bolivia. Econ Geol 59(1): 110–125

    Google Scholar 

  • Lovell H (1967) Geology and mineral deposits of the Kirkland Lake-Larder Lake mining area of northeastern Ontario. CIM Centennial field excursion guidebook, northwestern Quebec-northern Ontario, pp 72–77

    Google Scholar 

  • Lowe DR (1980) Archean sedimentation. Annu Rev Earth Planet Sci 8:145–167

    Google Scholar 

  • Lowell JD, GuilbertJM (1970) Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ Geol 65(4):373–408

    Google Scholar 

  • Luff WM (1977) Geology of Brunswick No. 12 mine. Can Min Metall Bull 70(782): 109–119

    Google Scholar 

  • Mainwaring PR, Naldrett AJ (1977) Country-rock assimilation and genesis of Cu -Ni sulfides in the Water Hen intrusion, Duluth Complex, Minnesota. Econ Geol 72: 1269–1284

    Google Scholar 

  • Markland GD (1966) Geology of the Moose Mountain Mine and its application to mining and milling. Can Min Metall Bull 59 (646): 159–170

    Google Scholar 

  • Marsden RW (1968) Geology of the iron ores of the Lake Superior region in the United States. In: Ridge JD (ed) Ore deposits of the United States 1933-1967 (Graton-Sales volume). Am Inst Min Metall Petrol Eng, New York, pp 489–507

    Google Scholar 

  • Marston RJ, Groves DI, Hudson DR, Ross JR (1981) Nickel sulfide deposits in Western Australia: a review. Econ Geol 76:1330–1363

    Google Scholar 

  • Maske S, Cawthorn RG (1986) The nickel occurrence in the Insizwa Complex, Transkei. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, II. Geol Soc S Afr, Johannesburg, pp 2149–2158

    Google Scholar 

  • MathiasBV, Clark CJ (1975) Mount Isa copper and silver-lead-zinc orebodies -Isa and Hilton Mines. In: Knight CL (ed) Economic geology of Australia and Papua New Guinea, 1. Metals. Australas Inst Min Metall, pp 351–372

    Google Scholar 

  • McBirney AR (1989) The Skaergaard Layered Series: 1. Structure and average compositions. J Petrol 30(2): 363–396

    Google Scholar 

  • McCartney WD, Potter RR (1962) Mineralization as related to structural deformation, igneous activity and sedimentation in folded geosynclines. Can Min J 83(4): 83–87

    Google Scholar 

  • Meintzer RE, Wise MA, Cerny P (1984) Distribution and structural setting of fertile granites and related pegmatites in the Yellowknife pegmatite field, District of Mackenzie. Geol Surv Can Pap 84-1A: 373–381

    Google Scholar 

  • Miller LJ, Smith ME (1975) Sherlock Bay nickel-copper. In: Knight CL (ed) Economic geology of Australia and Papua New Guinea, I. Metals. Australas Inst Min Metall, pp 168–174

    Google Scholar 

  • Miller WG (1913) Lake Superior silver deposits. Rep Ont Bur Mines 19 pt 2, chap 3

    Google Scholar 

  • Minnitt RCA (1986) Porphyry copper-molybdenum mineralization at Haib River, South West Africa/Namibia. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, II. Geol Soc S Afr, Johannesburg, pp 1567–1585

    Google Scholar 

  • Muir JE, Comba CDA (1979) The Dundonald deposit: an example of volcanic-type nickel-sulphide mineralization. Can Mineral 17 pt 2:351–359

    Google Scholar 

  • Naldrett AJ (1981) Platinum-group element deposits. In: Cabri LJ (ed) Platinum-group elements: mineralogy, geology, recovery. Can Inst Min Metall, Ste.-Anne-de-Bellevue, Que, Can, pp 197–232

    Google Scholar 

  • Naldrett AJ (1984) Mineralogy and composition of the Sudbury ores. In: Pye EG, Naldrett AJ, Giblin PE (eds) The geology and ore deposits of the Sudbury structure. Ont Geol Surv, Ont, Can, pp 309–325

    Google Scholar 

  • Naldrett AJ, Macdonald AJ (1980) Tectonic settings of Ni -Cu sulfide ores: their importance in genesis and exploration. In: Strangway DW (ed) Continental crust and its mineral deposits. Geol Assoc Can Spec Pap 20:633–658

    Google Scholar 

  • Neumann H (1944) Silver deposits at Königsberg. Norg Geol Unders 162: 142 pp

    Google Scholar 

  • Nichols RS (1988) Archean geology and silver mineralization controls at Cobalt, Ontario. Can Min Metall Bull 81(910):40–48

    Google Scholar 

  • Padgham WA (1986) Turbidite-hosted gold-quartz veins in the Slave Structural Province, NWT. In: Keppie JD, Boyle RW, Haynes SJ (eds) Turbidite-hosted gold deposits. Geol Assoc Can Spec Pap 32: 119–134

    Google Scholar 

  • Padgham WA (1988) Discussion: of Hutchinson, R.W, 1987. Econ Geol 83(6): 1287

    Google Scholar 

  • Partington GA (1990) Environment and structural controls on the intrusion of the giant rare metal Green-bushes pegmatite, Western Australia. Econ Geol 85(3): 437–456

    Google Scholar 

  • PerederyWV and Geological Staff (1982) Geology and nickel sulphide deposits of the Thompson belt, Manitoba. In: Hutchinson RW, Spence CD, Franklin JM (eds) Precambrian sulphide deposits (H. S. Robinson memorial volume). Geol Assoc Can Spec Pap 25: 165–209

    Google Scholar 

  • Pretorius DA (1976) The nature of the Witwatersrand gold-uranium deposits. In: Wolf KH (ed) Handbook of stratabound and stratiform ore deposits, vol 7. Elsevier, Amsterdam, pp 29–88

    Google Scholar 

  • Pretorius DA (1986) The Goldfields of the Witwatersrand Basin. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, II. Geol Soc S Afr, Johannesburg, pp 489–494

    Google Scholar 

  • Pyke DR, Middleton RS (1971) Distribution and characteristics of the sulphide ores of the Timmins area. Can Min Metall Bull 64(710):55–66

    Google Scholar 

  • Rackley RI (1976) Origin of western-states type uranium mineralization. In: Wolf KH (ed) Handbook of strata-bound and stratiform ore deposits, vol 7. Elsevier. Amsterdam, pp 89–152

    Google Scholar 

  • Reimer TO (1984) Alternative model for the derivation of gold in the Witwatersrand Supergroup. J Geol Soc London 141:263–272

    Google Scholar 

  • Reimer TO (1985) Volcanic rocks and weathering in the Early Proterozoic Witwatersrand Supergroup. South Africa. Bull Geol Surv Finl 331:33–49

    Google Scholar 

  • Reimer TO, Mossman DJ (1990) Sulfidization of Witwatersrand black sands: from enigma to myth. Geology 18(5):426–429

    Google Scholar 

  • Robb LJ, Meyer FM (1990) The nature of the Witwatersrand hinterland: conjectures on the source area problem. Econ Geol 85(3):511 -536

    Google Scholar 

  • Robb LJ, RobbVM (1986) Archean pegmatite deposits in the north-eastern Transvaal. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, I. Geol Soc S Afr, Johannesburg, pp 437–450

    Google Scholar 

  • Roberts JB (1975) Windara nickel deposits. In: Knight CL (ed) Economic geology of Australia and Papua New Guinea, 1. Metals. Australas Inst Min Metall, pp 129–143

    Google Scholar 

  • Robertson JA (1976) The Blind River uranium deposits: the ores and their setting. Misc Pap Ont Minist Nat Res 65:45 pp

    Google Scholar 

  • Robinson DJ, Hutchinson RW (1982) Evidence for a vol-canogenic-exhalative origin of a massive nickel sulphide deposit at Redstone, Timmins, Ontario. In: Hutchinson RW, Spence CD, Franklin JM (eds) Precambrian sulphide deposits (H. S. Robinson memorial volume). Geol Assoc Can Spec Pap 25:211–254

    Google Scholar 

  • Rowntree JC, Mosher DV (1975) Jabiluka uranium deposits. In: Knight CL (ed) Economic geology of Australia and Papua New Guinea, 1. Metals. Australas Inst Min Metall, pp 321–326

    Google Scholar 

  • Ruelle JCL (1982) Depositional environments and genesis of stratiform copper deposits of the Redstone Copper Belt, McKenzie Mountains, NWT. In: Hutchinson RW, Spence CD, Franklin JM (eds) Precam-brian sulphide deposits (H. S. Robinson memorial volume). Geol Assoc Can Spec Pap 25: 701–737

    Google Scholar 

  • Rye DM, Rye RO (1974) Homestake gold mine, South Dakota. I. Stable isotope studies. Econ Geol 69(3): 293–317

    Google Scholar 

  • Rye DM, Doe BR, Delevaux MH (1974) The Homestake gold mine. South Dakota. II. Lead isotopes, mineralization, and source of lead in ores of the northern Black Hills. Econ Geol 69:814–822

    Google Scholar 

  • Sangster DF (1972) Isotopic studies of ore-leads in the Hanson Lake-Flin Flon-Snow Lake mineral belt. Can J Earth Sci 9(5):500–513

    Google Scholar 

  • Sangster DF (1976) Carbonate-hosted lead-zinc deposits. In: Wolf KH (ed) Handbook of stratabound and stratiform ore deposits. vol 6. Elsevier, Amsterdam, pp 448–456

    Google Scholar 

  • Sangster DF, Scott SD (1976) Precambrian stratabound, massive Cu -Zn -Pb sulfide ores of North America. In: WolfKH (ed) Handbook of stratabound and stratiform ore deposits, vol 6. Elsevier, Amsterdam, pp 129– 222

    Google Scholar 

  • Schenk PE (1969) Carbonate-sulfate-redbed facies and cyclic sedimentation of the Windsorian stage (Middle Carboniferous) Maritime Provinces. Can J Earth Sci 6:1037–1066

    Google Scholar 

  • Schidlowski M (1976) Archean atmosphere and evolution of terrestrial oxygen budget. In: Windley BF (ed) The early history of the Earth. John Wiley & Sons. New York. pp 525–535

    Google Scholar 

  • Schidlowski M (1990) Life on the early Earth: bridgehead from cosmos or autochthonous phenomenon. In: Gopalan K. GaurVK. Somayajulu BLK, Macdougall JD (eds) Mantle to meteorites. Indian Acad Sci. Bangalore, pp 189–199

    Google Scholar 

  • Sestini G (1973) Sedimentology of a paleoplacer: the gold-bearing Tarkwaian of Ghana. In: Amstutz GC, Bernard AJ (eds) Ores in sediments. Int Un Geol Sci Ser A3: 275–305

    Google Scholar 

  • Sillitoe RH (1973) The tops and bottoms of porphyry copper deposits. Econ Geol 68: 799–815

    Google Scholar 

  • Simpson TA. GrayTR (1968) The Birmingham red-ore district, Alabama. In: Ridge JD (ed) Ore deposits of the United States 1933-1967 (Graton-Sales volume). Am Inst Min Metall Petrol Eng, New York, pp 187–206

    Google Scholar 

  • Siroonian HA, Shaw DM, Jones RE (1959) Lithium geochemistry and the source of the spodumene pegmatites of the Preissac-La Motte-La Corne region of western Quebec. Can Mineral 6:320–338

    Google Scholar 

  • Stanton RL (1989) The precursor principle and the possible significance of stratiform ores and related chemical sediments in the elucidation of processes of regional metamorphic mineral formation. Philos Trans R Soc London Ser A328:529–646

    Google Scholar 

  • Stanton RL, Vaughan JP (1979) Facies of ore formation: a preliminary account of the Pegmont deposit as an example of potential relations between small “ironformations” and stratiform sulfide ores. Proc Aust Inst Min Metall 270:25–38

    Google Scholar 

  • Sutcliffe RH, Sweeny JM, Edgar AD (1989) The Lac des Isles Complex, Ontario: petrology and platinum-group elements mineralization in an Archean mafic intrusion. Can J Earth Sci 26(7): 1408–1427

    Google Scholar 

  • Swager CP (1985) Syndeformational carbonate-replacement model for the copper mineralization at Mt. Isa, northwest Queensland, a microstructural study. Econ Geol 80(1):107–125

    Google Scholar 

  • Tarasov AV (1970) Structural control of copper and nickel mineralization in Norifsk I deposit. Int Geol Rev 12: 933–941

    Google Scholar 

  • Teixeira G, Gonzalez M (1988) Minas do Camaqua, Municipio de Cacapava do Sul, RS. Chapter III. In: Schobbenhaus C, Coelho CES (eds) Principais depositos minerais do Brasil, vol 3. Dep Nac Produaco Mineral, Bras, pp 33–41

    Google Scholar 

  • Titley SR. Hicks CL, (eds) (1966) Geology of the porphyry copper deposits, southwestern North America. Univ Arizona Press, Tucson, 287 pp

    Google Scholar 

  • Tolbert GE, Tremaine JW, Melcher GC, Gomez CB (1971) The recently discovered Serra dos Carajas iron deposits, northern Brazil. Econ Geol 66:985–994

    Google Scholar 

  • Trendall AF (1973) Precambrian iron-formation of Australia. Econ Geol 68:1023–1034

    Google Scholar 

  • Unrug R (1988) Mineralization controls and source of metals in the Lufilian Fold Belt. Shaba (Zaire), Zambia. and Angola. Econ Geol 83: 1247–1258

    Google Scholar 

  • Van Deventer JL. Eriksson PG. Snyman CP (1986) The Thabazimbi iron ore deposits, north-western Transvaal. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa. I. Geol Soc S Afr. Johannesburg. pp 923–930

    Google Scholar 

  • Van Schalkwyk JF, Beukes NJ (1986) The Sishen iron ore deposits. Griqualand West. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, I. Geol Soc S Afr, Johannesburg, pp 931–956

    Google Scholar 

  • Vaughan DJ, Sweeney M, Friedrich G, Diedel R, Haranczyk C (1989) The Kupferschiefer: an overview with an appraisal of the different types of mineralization. Econ Geol 84(5): 1003–1027

    Google Scholar 

  • Vermaak CF, Von Gruenewaldt G (1986) Introduction to the Bushveld Complex. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, II. Geol Soc S Afr, Johannesburg, pp 1021–1029

    Google Scholar 

  • Verwoerd WJ (1986) Mineral deposits associated with carbonatites and alkaline rocks. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, II. Geol Soc S Afr, Johannesburg, pp 2173–2191

    Google Scholar 

  • Viljoen MJ, Hieber R (1986) The Rustenburg Section of Rustenburg Platinum Mines Limited, with reference to the Merensky Reef. In: Anhaeusser CR, Maske S (eds) Mineral deposits of southern Africa, II. Geol Soc S Afr, Johannesburg, pp 1107– 1134

    Google Scholar 

  • Viljoen MJ, Bernasconi A, van Coller N, Kinloch E, Viljoen RJ (1976) The geology of the Shangani deposit, Rhodesia. Econ Geol 71:76–95

    Google Scholar 

  • Wallace SR, Muncaster NK, Jonson DC, MacKenzie WB, Bookstrom AA, Surface VE (1968) Multiple intrusion and mineralization at Climax, Colorado. In: Ridge JD (ed) Ore deposits of the United States 1933-1967 (Graton-Sales volume). Am Inst Min Metall Petrol Eng, pp 605–640

    Google Scholar 

  • Wallace SR, MacKenzie WB, Blair RG, Muncaster NK (1978) Geology of the Urad and Henderson molybdenum deposits, Clear Creek County, Colorado, with a section on a comparison of these deposits with those at Climax, Colorado. Econ Geol 73 (3): 325–368

    Google Scholar 

  • Williams DAC (1979) The association of some nickel sulfíde deposits with komatiitic volcanism in Rhodesia. Can Mineral 17(2):337–349

    Google Scholar 

  • Wilson AH, Naldrett AJ, Tredoux M (1989) Distribution and controls of platinum group element and base metal mineralization in the Darwendale subchamber of the Great Dyke, Zimbabwe. Geology 17 (7): 649–652

    Google Scholar 

  • Woodall R (1975) Gold in the Precambrian of Western Australia. In: Knight CL (ed) Economic geology of Australia and Papua New Guinea, I. Metals. Australas Inst Min Metall, pp 175– 184

    Google Scholar 

  • Worst BG (1960) The Great Dyke of Southern Rhodesia. S Rhod Geol Surv Bull 47: 122–125

    Google Scholar 

  • Wu Y, Beales F (1981) A reconnaissance study by paleomagnetic measurements of the age of mineralization along the Viburnum trend, southeast Missouri. Econ Geol 76(7):1879–1894

    Google Scholar 

  • Zuffardi P (1989) Italy. In: Dunning FW, Garrard P, Haslam HW, Ixer RA (eds) Mineral deposits of Europe, vols 4/5. Inst Min Metall Min Soc, Oxford, pp 247–252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hutchinson, R.W. (1992). Mineral Deposits and Metallogeny: Indicators of Earth’s Evolution. In: Schidlowski, M., Golubic, S., Kimberley, M.M., McKirdy, D.M., Trudinger, P.A. (eds) Early Organic Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-76884-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-76884-2_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-76886-6

  • Online ISBN: 978-3-642-76884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics