Skip to main content

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 8))

Abstract

In 1931 Root reported that the presence of CO2 markedly reduced the oxygen content of the blood of toadfish, sea robin, and mackerel, and caused the oxygen dissociation curve of the hemoglobin to become “nearly asymptotic with respect to the abscissa before saturation is complete”, which is still a valid description of the Root effect (cf. Brittain 1987). The same effect is obtained by acid addition to the blood (Root and Irving 1943).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albers C, Gotz KH, Welbers P (1981) Oxygen transport and acid-base balance in the blood of the sheatfish, Silurus glanis. Respir Physiol 46: 223–236

    PubMed  CAS  Google Scholar 

  • Aschauer H, Weber RE, Braunitzer G (1985) The primary structure of the hemoglobin of the dogfish shark (Squalus acanthias) antagonistic effects of ATP and urea on oxygen affinity of an elasmobranch hemoglobin. Biol Chem Hoppe-Seyler 366: 589–599

    PubMed  CAS  Google Scholar 

  • Baeyens DA, Hoffert JR, Fromm PO (1971) Aerobic glycolysis and its role in maintenance of high 02 tensions in the teleost retina. Proc Soc Exp Biol Med 137: 740–744

    CAS  Google Scholar 

  • Baines GW (1975) Blood pH effects in eight fishes from the teleostean family Scorpaenidae. Comp Biochem Physiol 51A: 833–843

    CAS  Google Scholar 

  • Barnett CH (1951) The structure and function of the choroidal gland of teleostean fish. J Anat 85: 113–119

    PubMed  CAS  Google Scholar 

  • Baroin A, Garcia-Romeu F, Lamarre T, Motais R (1984) A transient sodium-hydrogen exchange system induced by catecholamines in erythrocytes of rainbow trout, Salmo gairdneri. J Physiol 356: 21–31

    PubMed  CAS  Google Scholar 

  • Barra D, Petruzzelli R, Bossa F, Brunori M (1983) Primary structure of hemoglobin from trout (Salmoirideus) amino acid sequence of the β-chain of trout Hb I. Biochim Biophys Acta 742: 72–77

    PubMed  CAS  Google Scholar 

  • Binotti I, Giovenco S, Giardina B, Antonini E, Brunori M, Wyman J (1971) Studies on the functional properties of fish hemoglobins II. The oxygen equilibrium of the isolated hemoglobin components from trout blood. Arch Biochem Biophys 142: 274–280

    PubMed  CAS  Google Scholar 

  • Black EC, Kirkpatrick D, Tucker HH (1966) Oxygen dissociation curves of the blood of brook trout (Salvelinus fontinalis) acclimated to summer and winter temperatures. J Fish Res Bd Can 23: 1–13

    CAS  Google Scholar 

  • Borjeson H, Hoglund LB (1976) Swimbladder gas and Root effect in young salmon during hypercapnia. Comp Biochem Physiol 54A: 335–339

    CAS  Google Scholar 

  • Bonaventura C, Sullivan B, Bonaventura J, Brunori M (1976) Spot hemoglobin. Studies on the Root effect hemoglobin of a marine teleost. J Biol Chem 251: 1871–1876

    PubMed  CAS  Google Scholar 

  • Boutilier RG, Iwama GK, Randall DJ (1986) The promotion of catecholamine release in rainbow trout, Salmo gairdneri by acute acidosis: interactions between red cell pH and haemoglobin oxygen-carrying capacity. J Exp Biol 123: 145–157

    PubMed  CAS  Google Scholar 

  • Boutilier RG, Dobson G, Hoeger U, Randall DJ (1988) Acute exposure to giaded levels of hypoxia in rainbow trout (Salmo gairdneri): metabolic and respiratory adaptations. Respir Physiol 71: 69–82

    PubMed  CAS  Google Scholar 

  • Bridges CR, Taylor AC, Atkinson RJA (1982) Respiratory properties of the blood of the burrowing red band fish Cepola rubescens L. J Exp Mar Biol Ecol 59: 51–60

    Google Scholar 

  • Bridges CR, Hlastala MP, Riepl G, Scheid P (1983) Root effect induced by C02 and by fixed acid in the blood of the eel, Anguilla anguilla. Respir Physiol 51: 275–286

    PubMed  CAS  Google Scholar 

  • Bridges CR, Pelster B, Scheid P (1984) Root effect in vertebrate haemoglobins and invertebrate haemocyanin: presence and function. Pflügers Arch 400: R68

    Google Scholar 

  • Bridges CR, Pelster B, Scheid P (1985) Oxygen binding in blood of Xenopus laevis ( Amphibia) and evidence against Root effect. Respir Physiol 61: 125–136

    PubMed  CAS  Google Scholar 

  • Brittain T (1985) A kinetic and equilibrium study of ligand binding to a Root-effect haemoglobin. Biochem J 228: 409–414

    PubMed  CAS  Google Scholar 

  • Brittain T (1987) The Root effect. Comp Biochem Physiol 86B: 473–481

    CAS  Google Scholar 

  • Brix O (1982) The adaptive significance of the reversed Bohr and Root shifts in blood from the marine gastropod, Buccinum undatum. J Exp Zool 221: 27–36

    CAS  Google Scholar 

  • Brunori M (1975) Molecular adaptation to physiological requirements: The hemoglobin system of trout. In: Horecker BL, Stadtman ER (eds) Current topics in cellular regulation, Vol 9. Academic Press, New York, pp 1–39

    Google Scholar 

  • Brunori M, Giardina B, Antonini E, Benedetti PA, Bianchini G (1974) Distribution of the haemoglobin components of trout blood among the erythrocytes: Observations by single-cell spectroscopy. J Mol Biol 86: 165–169

    PubMed  CAS  Google Scholar 

  • Brunori M, Bellelli A, Giardina B, Condo S, Perutz MF (1987) Is there a Root effect in Xenopus hemoglobin? Fed Europ Biochem Soc 221: 161–166

    CAS  Google Scholar 

  • Butler PJ, Taylor EW, Davison W (1979) The effect of long-term, moderate hypoxia on acid-base balance, plasma catecholamines and possible anaerobic end products in the unrestrained dogfish Scyliorhinus canicula. J Comp Physiol 132: 297–303

    CAS  Google Scholar 

  • Butler PJ, Metcalfe JD, Ginley SA (1986) Plasma catecholamines in the lesser spotted dogfish and rainbow trout at rest and during different levels of exercise. J Exp Biol 123: 409–421

    PubMed  CAS  Google Scholar 

  • Dafre AL, Wilhelm FD (1989) Root effect hemoglobins in marine fish. Comp Biochem Physiol 92A: 467–471

    Google Scholar 

  • D’Aoust BG (1970) The role of lactic acid in gas secretion in the teleost swimbladder. Comp Biochem Physiol 32: 637–668

    PubMed  Google Scholar 

  • D’Avino R, Caruso C, Schininä ME, Rutigliano B, Romano M, Camardella L, Bossa F, Barra D, Di Prisco G (1989) The Amino acid sequence of the α- and β-chains of the two hemoglobins of the Antarctic fish Notothenia coriiceps neglecta. FEBS Lett 250: 53–56

    PubMed  Google Scholar 

  • Denton E (1961) The buoyancy of fish and cephalopods. Prog Biophys Biophys Chem 11: 178–234

    Google Scholar 

  • Di Prisco G, Giardina B, D’Avino R, Condo SG, Bellelli A, Brunori M (1988) Antarctic fish hemoglobin: An outline of the molecular structure and oxygen binding properties — II. Oxygen binding properties. Comp Biochem Physiol 90B: 585–591

    Google Scholar 

  • Dobson GP, Baldwin J (1982) Regulation of blood oxygen affinity in the Australian blackfish Gadopsis marmoratus. J. Exp Biol 99: 223–243

    CAS  Google Scholar 

  • Dobson GP, Wood SC, Daxboeck C, Perry SF (1986) Intracellular buffering and oxygen transport in the Pacific blue marlin (Makaira nigricans)-. Adaptations to high-speed swimming. Physiol Zool 59: 150–156

    Google Scholar 

  • Everaarts JM (1978) The haemoglobin of the hering Clupea harengus. Neth J Sea Res 12: 1–57

    Google Scholar 

  • Fänge R (1950) Carbonic anhydrase and gas secretion in the swimbladder of fishes. XVIII Int Physiol Congr 1950: 192–193

    Google Scholar 

  • Fänge R (1953) The mechanisms of gas transport in the euphysoclist swimbladder. Acta Physiol Scand 30: 1–133

    Google Scholar 

  • Fänge R (1983) Gas exchange in fish swim bladder. Rev Physiol Biochem Pharmacol 97: 111–158

    PubMed  Google Scholar 

  • Fairbanks MB, Hoffert JR, Fromm PO (1969) The dependence of the oxygen-concentrating mechanisms of the teleost eye (Salmo gairdneri) on the enzyme carbonic anhydrase. J Gen Physiol 54: 203–211

    PubMed  CAS  Google Scholar 

  • Fairbanks MB, Hoffert JR, Fromm PO (1974) Short circuiting of the ocular oxygen-concentrating mechanism in the teleost Salmo gairdneri using carbonic anhydrase inhibitors. J Gen Physiol 64: 263–273

    PubMed  CAS  Google Scholar 

  • Farmer M, Fyhn HJ, Fyhn UEH, Noble RW (1979) Occurrence of Root effect hemoglobins in Amazonian fishes. Comp Biochem Physiol 62A: 115–124

    Google Scholar 

  • Fievet B, Motais R, Thomas S (1987) Role of adrenergic-dependent H+ release from red cells in acidosis induced by hypoxia in trout. Am J Physiol 252: R269 - R275

    PubMed  CAS  Google Scholar 

  • Fisher WK, Nash AR, Thompson EOP (1977) Haemoglobins of the shark, Heterodontus portusjacksoni. III. Amino acid sequence of the β-chain. Aust J Biol Sci 30: 487–506

    PubMed  CAS  Google Scholar 

  • Fonner DB, Hoffert JR, Fromm PO (1973) The importance of the counter current oxygen multiplier mechanism in maintaining retinal function in the teleost. Comp Biochem Physiol 46A: 559–567

    CAS  Google Scholar 

  • Forster RE, Steen JB (1969) The rate of the “Root shift” in eel red cells and eel haemoglobin solutions. J Physiol 204: 259–282

    PubMed  CAS  Google Scholar 

  • Garlick RL, Bunn HF, Fyhn H J, Fyhn UEH, Martin JP, Noble RW, Powers DA (1979) Functional studies on the separated hemoglobin components of an air-breathing catfish, Hoplosternum littorale ( Hancock ). Comp Biochem Physiol 62A: 219–226

    CAS  Google Scholar 

  • Giardina B, Brunori M, Binotti I, Giovenco S, Antonini E (1973) Studies on the properties of fish hemoglobins. Kinetics of reaction with oxygen and carbon monoxide of the isolated hemoglobin components from trout (Salmo irideus). Eur J Biochem 39: 571–579

    PubMed  CAS  Google Scholar 

  • Gillen RG, Riggs A (1973) Structure and function of the isolated hemoglobins of the American eel, Anguilla rostrata. J Biol Chem 248: 1961–1969

    PubMed  CAS  Google Scholar 

  • Gronenborn AM, Clore GM, Brunori M, Giardina B, Falcioni G, Perutz MF (1984) Stereochemistry of ATP and GTP bound to fish haemoglobins. A transferred nuclear overhauser enhancement, 31P- Nuclear magnetic resonance, oxygen equilibrium and molecular modelling study, J Mol Biol 178: 731–742

    PubMed  CAS  Google Scholar 

  • Grujic-Injac B, Braunitzer G, Stangl A (1980) Hamoglobine, XXXV1 Die Sequenz der und ftj-Ketten der Hamoglobine des Karpfens (Cyprinus carpio L.). Hoppe-Seyler’s Z Physiol Chem 361: 1629–1639

    PubMed  CAS  Google Scholar 

  • Hayden JB, Cech JJ, Bridges D W (1975) Blood oxygen dissociation characteristics of the winter flounder, Pseudopleuronectes americanus. J Fish Res Board Can 32: 1539–1544

    Google Scholar 

  • Heisler N (1984) Acid-base regulation in fishes. In: Hoar WS, Randall DJ (eds) Fish physiology, Vol XA. Academic Press, New York, pp 315–401

    Google Scholar 

  • Heisler N (1986) Buffering and transmembrane ion transfer processes. In: Heisler N (ed) Acid-base regulation in animals, Chapter 1. Elsevier, Amsterdam, pp 3–47

    Google Scholar 

  • Heming TA, Randall DJ, Boutilier RG, Iwama GK, Primmett D (1986) Ionic equilibria in red blood cells of rainbow trout (Salmo gairdneri): CI’, HCO3, and H+. Respir Physiol 65: 223–234

    PubMed  CAS  Google Scholar 

  • Hoffert JR, Fromm PO (1970) Quantitative aspects of glucose catabolism by rainbow and lake trout ocular tissues including alterations resulting from various pathological conditions. Exp Eye Res 10: 263–272

    PubMed  CAS  Google Scholar 

  • Holeton GF, Neumann P, Heisler N (1983) Branchial ion exchange and acid-base regulation after strenuous exercise in rainbow trout (Salmo gairdneri). Respir Physiol 51: 303–318

    PubMed  CAS  Google Scholar 

  • Ingermann RL, Terwilliger RC (1982) Presence and possible function of Root effect hemoglobins in fishes lacking functional swimbladders. J Exp Zool 220: 171–177

    PubMed  CAS  Google Scholar 

  • Innes AJ, Wells RMG (1985) Respiration and oxygen transport functions of the blood from an intertidal fish, Helcogramma medium ( Tripterygiidae ). Environ Biol Fish 14: 213–226

    Google Scholar 

  • Itada N, Turitzin S, Steen JB (1970) Root-shift in eel hemoglobin. Respir Physiol 8: 276–279

    PubMed  CAS  Google Scholar 

  • Jensen FB (1987) Influences of exercise-stress and adrenaline upon intra- and extracellular acid-base status, electrolyte composition and respiratory properties of blood in tench (Tinea tinea) at different seasons. J Comp Physiol B 157: 51–60

    PubMed  CAS  Google Scholar 

  • Jensen FB, Weber RE (1982) Respiratory properties of tench blood and hemoglobin adaptation to hypoxic-hypercapnic water. Mol Physiol 2: 235–250

    CAS  Google Scholar 

  • Jensen FB, Weber RE (1985) Kinetics of the acclimational responses of tench to combined hypoxia and hypercapnia. II. Extra- and intracellular acid-base status in the blood. J Comp Physiol B 156: 205–211

    Google Scholar 

  • Jensen FB, Weber RE (1987) Internal hypoxia-hypercapnia in tench exposed to aluminium in acid water: Effects on blood gas transport, acid-base status and electrolyte composition in arterial blood. J Exp Biol 127: 427–442

    CAS  Google Scholar 

  • Kister J, Bohn B, Marden MC, Poyart C (1989) Analysis of oxygen binding by Xenopus laevis hemoglobin: implications for the Root effect. Respir Physiol 76: 191–204

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Pelster B, Scheid P (1989) Solute back-diffusion raises the gas concentrating efficiency in the counter-current flow. Respir Physiol 78: 59–71

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Pelster B, Scheid P (1990) CO2 back-diffusion in the rete aids O2 secretion into the swimbladder of the eel. Respir Physiol 79: 231–242

    PubMed  CAS  Google Scholar 

  • Kuhn W, Ramel A, Kuhn HJ, Marti E (1963) The filling mechanism of the swimbladder. Generation of high gas pressures through hairpin countercurrent multiplication. Experientia XIX: 497–552

    Google Scholar 

  • Kutchai H (1971) Role of carbonic anhydrase in lactate secretion by the swimbladder. Comp Biochem Physiol 39A: 357–359

    CAS  Google Scholar 

  • Maetz J (1956) Le role biologique de l’anhydrase carbonique chez quelques téléostéens. Suppl Bull Biol, pp 1–129

    Google Scholar 

  • Magnuson JJ, Baker JP, Rahel EJ (1984) A critical assessment of effects of acidification on fisheries in North America. Phil Trans R Soc Lond B 305: 501–516

    Google Scholar 

  • Malte H, Weber RE (1988) Respiratory stress in rainbow trout dying from aluminium exposure in soft, acid water, with or without added sodium chloride. Fish Physiol Biochem 5: 249–256

    CAS  Google Scholar 

  • Marshall NB (1960) Swimbladder structure of deep-sea fishes in relation to their systematics and biology. Discovery Rep 31: 1–122

    Google Scholar 

  • Maverez RN, Pérez JE (1984) Blood adaptations to marine and fresh water environments in fish of the family Sciaendiae ( Perciformes ). J Fish Biol 25: 657–663

    Google Scholar 

  • Miller KI, Mangum CP (1988) An investigation of the nature of Bohr, Root, and Haldane effects in Octopus defleini hemocyanin. J Comp Physiol B 158: 547–552

    PubMed  CAS  Google Scholar 

  • Milligan CL, Wood CM (1986) Intracellular and extracellular acid-base status and H+ exchange with the environment after exhaustive exercise in the rainbow trout. J Exp Biol 123: 93–121

    PubMed  CAS  Google Scholar 

  • Milligan CL, Wood CM (1987) Regulation of blood oxygen transport and red cell pH1 after exhaustive activity in rainbow trout (Salmo gairdneri) and starry flounder (Platichthys stellatus). J Exp Biol 133: 263–282

    PubMed  CAS  Google Scholar 

  • Morris RJ, Gibson QH (1982) Cooperative ligand binding to hemoglobin. Effects of temperature and pH on a hemoglobin with spectrophotometrically distinct chains (Tunnus thynnus). J Biol Chem 257: 4869–4874

    PubMed  CAS  Google Scholar 

  • Motais R, Garcia-Romeu F, Borgese F (1987) The control of Na+ /H+ exchange by molecular oxygen in trout erythrocytes. A possible role of hemoglobin as a transducer. J Gen Physiol 90: 197–207

    PubMed  CAS  Google Scholar 

  • Nagai K, Perutz MF, Poyart C (1985) Oxygen-binding properties of human mutant hemoglobins synthesized in Escherichia coli. Proc Nat Acad Sci USA 82: 7252–7255

    PubMed  CAS  Google Scholar 

  • Nielsen JG, Munk O (1964) A hadal fish (Bassogigas profundissimus) with a functional swimbladder. Nature (Lond) 204: 594–595

    Google Scholar 

  • Nikinmaa M (1986) Control of red cell pH in teleost fishes. Ann Zool Fenn 23: 223–235

    Google Scholar 

  • Nikinmaa M, Cech JJ, Ryhánen EL, Salama A (1987) Red cell function of carp ( Cyprinus carpió) in acute hypoxia. Exp Biol 47: 53–58

    PubMed  CAS  Google Scholar 

  • Noble RW, Parkhurst LJ, Gibson QH (1970) The effect of pH on the reactions of oxygen and carbon monoxide with the hemoglobin of the carp, Cyprinus carpió. J Biol Chem 245: 6628–6633

    PubMed  CAS  Google Scholar 

  • Noble RW, Pennelly RR, Riggs A (1975) Studies of the functional properties of the hemoglobin from the benthic fish, Antimora rostrata. Comp Biochem Physiol 52B: 75–81

    Google Scholar 

  • Noble RW, Kwiatkowski LD, De Young A, Davis B J, Haedrich RL, Tam LT, Riggs AF (1986) Functional properties of hemoglobins from deep-sea fish: Correlations with depth distribution and presence of a swimbladder. Biochim Biophys Acta 870: 552–563

    PubMed  CAS  Google Scholar 

  • Parkhurst LJ, Goss DJ, Perutz MF (1983) Kinetic and equilibrium studies on the role of the β-147 histidine in the Root effect and cooperativity in carp hemoglobin. Biochem 22: 5401–5409

    CAS  Google Scholar 

  • Pelster B, Weber RE (1990) Influence of organic phosphates on the Root effect of multiple fish haemoglobins. J Exp Biol 149: 425–437

    CAS  Google Scholar 

  • Pelster B, Bridges CR, Taylor AC, Morris S, Atkinson RJA (1988) Respiratory adaptations of the burrowing marine teleost Lumpenus lampretaeformis (Walbaum). I. O2 and CO2 transport, acid-base balance — a comparison with Cepola rubescens L. J Exp Mar Biol Ecol 124: 31–42

    Google Scholar 

  • Pelster B, Kobayashi H, Scheid P (1989a) Metabolism of the perfused swimbladder of European eel: Oxygen, carbon dioxide, glucose and lactate balance. J Exp Biol 144: 495–506

    Google Scholar 

  • Pelster B, Kobayashi H, Scheid P (1989b) Reduction of gas solubility in the fish swimbladder. In: Piiper J, Goldstick TK, Meyer M (eds) Oxygen transport to tissue, Vol 12. Plenum, New York (In Press)

    Google Scholar 

  • Pelster B, Kobayashi H, Scheid P (1990) Buffering characteristics of eel blood at the extreme conditions in the swimbladder. Respir Physiol 79: 219–230

    PubMed  CAS  Google Scholar 

  • Pennelly RR, Riggs A, Noble RW (1978) The kinetics and equilibria of squirrel-fish hemoglobin. A Root effect hemoglobin complicated by large subunit heterogeneity. Biochim Biophys. Acta 533: 120–129

    PubMed  CAS  Google Scholar 

  • Perry SF (1986) Carbon dioxide excretion in fishes. Can J Zool 64: 565–572

    Google Scholar 

  • Perutz MF (1983) Species adaptation in a protein molecule. Mol Biol Evol 1–28

    Google Scholar 

  • Perutz MF, Brunori M (1982) Stereochemistry of cooperative effects in fish and amphibian haemoglobins. Nature (Lond) 299: 421–426

    CAS  Google Scholar 

  • Petruzzelli R, Barra D, Goffredo BM, Bossa F, Coletta M, Brunori M (1984) Amino-acid sequence of β-chain of hemoglobin IV from trout (Salmo irideus). Biochim Biophys Acta 789: 69–73

    CAS  Google Scholar 

  • Piiper J, Meyer M, Drees F (1972) Hydrogen ion balance in the elasmobranch Scyliorhinus stellaris after exhausting activity. Respir Physiol 16: 290–303

    PubMed  CAS  Google Scholar 

  • Playle RC, Goss GG, Wood CM (1989) Physiological disturbances in rainbow trout (Salmo gairdneri) during acid and aluminum exposures in soft water of two calcium concentrations. Can J Zool 67: 314–324

    CAS  Google Scholar 

  • Powers DA, Fyhn UEH, Martin JP, Garlick RL, Wood SC (1979) A comparative study of the oxygen equilibria of blood from 40 genera of Amazonian fish. Comp Biochem Physiol 62A: 67–85

    Google Scholar 

  • Primmett DRN, Randall DJ, Mazeaud M, Boutilier RG (1986) The role of catecholamines in erythrocyte pH regulation and oxygen transport in rainbow trout (Salmo gairdneri) during exercise. J Exp Biol 122: 139–148

    PubMed  CAS  Google Scholar 

  • Randall D (1982) The control of respiration and circulation in fish during exercise and hypoxia. J Exp Biol 100: 275 - 288

    Google Scholar 

  • Randall D, Daxboeck C (1984) Oxygen and carbon dioxide transfer across fish gills. In: Hoar WS, Randall DJ (eds) Fish Physiology, Vol XA. Academic Press, New York, pp 263–314

    Google Scholar 

  • Randall DJ, Mense D, Boutilier RG (1987) The effects of burst swimming on aerobic swimming in chinook salmon (Oncorhynchus tshawytscha). Mar Behav Physiol 13: 77–88

    Google Scholar 

  • Riggs A (1979) Studies of the hemoglobins of Amazonian fishes: An overview. Comp Biochem Physiol 62A: 257–272

    Google Scholar 

  • Riggs AF (1988) The Bohr effect. Ann Rev Physiol 50: 181–204

    CAS  Google Scholar 

  • Rodewald K, Braunitzer G (1984) Die Primärstruktur des Hämoglobins vom Goldfisch (Carassius auratus). Hoppe-Seyler’s Z Physiol Chem 365: 95–104

    PubMed  CAS  Google Scholar 

  • Rodewald K, Stangl A, Braunitzer G (1984) Primary structure, biochemical and physiological aspects of hemoglobin from South American lungfish (Lepidosiren paradoxus, Dipnoi ). Hoppe-Seyler’s Z Physiol Chem 365: 639–649

    PubMed  CAS  Google Scholar 

  • Rodewald K, Oberthür W, Braunitzer G (1987) Homeothermic fish and hemoglobin: Primary structure of the hemoglobin from bluefin tuna (Thunnus thynnus, Scromboidei ). Biol Chem Hoppe-Seyler 368: 795–805

    Google Scholar 

  • Root RW (1931) The respiratory function of the blood of marine fishes. Biol Bull 61: 427–456

    CAS  Google Scholar 

  • Root RW, Irving L (1943) The effect of carbon dioxide and lactic acid on the oxygen-combining power of whole and hemolyzed blood of the marine fish Tautoga onitis ( Linn. ). Biol Bull 84: 207–212

    CAS  Google Scholar 

  • Saffran WA, Gibson QH (1978) The effect of pH on carbon monoxide binding to menhaden hemoglobin. J Biol Chem 253: 3171–3179

    PubMed  CAS  Google Scholar 

  • Salama A, Nikinmaa M (1988) The adrenergic responses of carp (Cyprinus carpio) red cells: Effects of PQ and pH. J Exp Biol 136: 405–416

    PubMed  CAS  Google Scholar 

  • Salama A, Nikinmaa M (1989) Species differences in the adrenergic responses of fish red cells: Studies on whitefish, pikeperch, trout and carp. Fish Physiol Biochem 6: 167–173

    CAS  Google Scholar 

  • Scholander PF, Van Dam L (1954) Secretion of gases against high pressures in the swimbladder of deep sea fishes. I. Oxygen dissociation in blood. Biol Bull 107: 247–259

    Google Scholar 

  • Steen JB (1963) The physiology of the swimbladder in the eel Anguilla vulgaris. III. The mechanism of gas secretion. Acta Physiol Scand 59: 221–241

    PubMed  CAS  Google Scholar 

  • Steen JB (1970) The swim bladder as a hydrostatic organ. In: Hoar WS, Randall DJ (eds) Fish Physiology, Vol IV. Academic Press, New York, pp 413–443

    Google Scholar 

  • Stray-Pedersen S, Nicolaysen A (1975) Qualitative and quantitative studies of the capillary structure in the rete mirabile of the eel, Anguilla vulgaris L. Acta Physiol Scand 94: 339–357

    PubMed  CAS  Google Scholar 

  • Tan AL, De Young A, Noble RW (1972) The pH dependence of the affinity, kinetics, and cooperativity of ligand binding to carp hemoglobin, Cyprinus carpio. J Biol Chem 247: 2493–2498

    PubMed  CAS  Google Scholar 

  • Tan AL, Noble RW, Gibson QH (1973) Conditions restricting allosteric transitions in carp hemoglobin. J Biol Chem 248: 2880–2888

    PubMed  CAS  Google Scholar 

  • Tetens V, Christensen NJ (1987) Beta-adrenergic control of blood oxygen affinity in acutely hypoxia exposed rainbow trout. J Comp Physiol B 157: 667–675

    PubMed  CAS  Google Scholar 

  • Tetens V, Lykkeboe G (1985) Acute exposure of rainbow trout to mild and deep hypoxia: O2 affinity and O2 capacitance of arterial blood. Respir Physiol 61: 221–235

    PubMed  CAS  Google Scholar 

  • Tucker VA (1967) Method for oxygen content and dissociation curves on microliter blood samples. J Appl Physiol 23: 410–414

    PubMed  CAS  Google Scholar 

  • Tufts BL, Randall DJ (1989) The functional significance of adrenergic pH regulation in fish erythrocytes. Can JZool 67: 235–238

    Google Scholar 

  • Vaccaro Torracca AM, Raschetti R, Salvioli R, Ricciardi G, Winterhalter KH (1977) Modulation of the Root effect in goldfish by ATP and GTP. Biochim Biophys Acta 496: 367–373

    Google Scholar 

  • Van den Thillart G, Randall D, Hoa-Ren L (1983) CO2 and H+ excretion by swimming coho salmon, Oncorhynchus kisutch. J Exp Biol 107: 169–180

    Google Scholar 

  • Walker RL, Wilkes PRH, Wood CM (1989) The effects of hypersaline exposure on oxygen-affinity of the blood of the freshwater teleost Catostomus commersoni. J Exp Biol 142: 125–142

    Google Scholar 

  • Weber RE (1990) Functional significance and structural basis of multiple hemoglobins with special reference to ectothermic vertebrates. In: Mellinger J, Truchot J-P (eds) Fundamental and applied aspects of nutritional and transport processes in animals. Karger, Basel (In Press)

    Google Scholar 

  • Weber RE, DeWilde JAM (1975) Oxygenation properties of haemoglobins from the flatfish plaice (Pleuronectes platessa) and flounder (Platichthys flesus). J Comp Physiol 101:99–110

    CAS  Google Scholar 

  • Weber RE, Lykkeboe G, Johansen K (1976a) Physiological properties of eel haemoglobin: Hypoxic acclimation, phosphate effects and multiplicity. J Exp Biol 64: 75–88

    CAS  Google Scholar 

  • Weber RE, Wood SC, Lomholt JP (1976b) Temperature acclimation and oxygen-binding properties of blood and multiple haemoglobins of rainbow trout. J Exp Biol 65: 333–345

    CAS  Google Scholar 

  • Weber RE, Sullivan B, Bonaventura J, Bona ventura C (1976c) The haemoglobin system of the primitive fish Amia calva: Isolation and functional characterisation of the individual haemoglobin components. Biochim Biophys Acta 434: 18–31

    Google Scholar 

  • Wilhelm DF, Reischl E (1981) Heterogeneity and functional properties of hemoglobins from South Brazilian freshwater fish. Comp Biochem Physiol 69B: 463–470

    Google Scholar 

  • Wittenberg JB, Haedrich RL (1974) The choroid rete mirabile of the fish eye. II. Distribution and relation to the pseudobranch and to the swimbladder rete mirabile. Biol Bull 146: 137–156

    PubMed  CAS  Google Scholar 

  • Wittenberg JB, Wittenberg BA (1962) Active secretion of oxygen into the eye of fish. Nature (Lond) 194: 106–107

    CAS  Google Scholar 

  • Wittenberg JB, Wittenberg BA (1974)The choroid rete mirabile of the fish eye. I. Oxygen secretion and structure. Comparison with the swimbladder rete mirabile. Biol Bull 146: 116–136

    PubMed  CAS  Google Scholar 

  • Wood CM, McDonald DG (1982) Physiological mechanisms of acid toxicity to fish. Proc Acid Rain/Fisheries Symp. Am Fish Soc, Ithaca, New York, pp 197–226

    Google Scholar 

  • Yamaguchi K, Nguyen-Phu D, Scheid P, Piiper J (1985) Kinetics of O2 uptake and release by human erythrocytes studied by a stopped-flow technique. J Appl Physiol 58: 1215–1224

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pelster, B., Weber, R.E. (1991). The Physiology of the Root Effect. In: Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75900-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75900-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75902-4

  • Online ISBN: 978-3-642-75900-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics