Skip to main content

Inhibitory Neurotransmitters and Nociception: Role of GABA and Glycine

  • Chapter
The Pharmacology of Pain

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 130))

Abstract

As the two most important inhibitory amino acid neurotransmitters in the central nervous system, γ-aminobutyric acid (GABA) and glycine play important roles in the processing of nociceptive information. At present three receptors for GABA receptors are recognized — GABAA, GABAB, and GABAC — and two for glycine — GlyA and GlyB. This chapter reviews briefly the pharmacology, anatomy, and molecular biology of these two neurotransmitters and their receptors and then examine their roles in acute and persistent nociception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aanonsen LM, Wilcox GL (1989) Muscimol, gamma-aminobutyric acidA receptors and excitatory amino acids in the mouse spinal cord. J Pharmacol Exp Ther 248:1034–1038

    PubMed  CAS  Google Scholar 

  • Aigouy L, Fondras JC, Pajot J, Schoeffler P, Woda A (1992) Intrathecal midazolam versus intrathecal morphine in orofacial nociception: an experimental study in rats. Neurosci Lett 139:97–99

    PubMed  CAS  Google Scholar 

  • Alvarez FJ, Kavookjian ZM, Light AR (1992) Synaptic interactions between GABA-immunoreactive profiles and the terminals of functionally defined myelinated nociceptors in the monkey and cat spinal cord. J Neurosci 12:2901–2917

    PubMed  CAS  Google Scholar 

  • Aran S, Hammond DL (1991) Antagonism of baclofen-induced antinociception by intrathecal administration of phaclofen or 2-hydroxy-saclofen, but not delta-aminovaleric acid in the rat. J Pharmacol Exp Ther 257:360–368

    PubMed  CAS  Google Scholar 

  • Basbaum AI (1988) Distribution of glycine receptor immunoreactivity in the spinal cord of the rat: cytochemical evidence for a differential glycinergic control of lamina I and V neurons. J Comp Neurol 278:330–336

    PubMed  CAS  Google Scholar 

  • Béchade C, Sur C, Triller A (1994) The inhibitory glycine receptor. Bioessays 16:735–744

    PubMed  Google Scholar 

  • Behbehani MM, Jiang M, Chandler SD, Ennis M (1990) The effect of GABA and its antagonists on midbrain periaqueductal gray neurons in the rat. Pain 40:195–204

    PubMed  CAS  Google Scholar 

  • Betz H, Kuhse J, Fischer M, Schmieden V, Laube B, Kuryatov A, Langosch D, Meyer G, Bormann J, Runström N, Matzenbach B, Kirsch J, Ramming M (1994) Structure, diversity and synaptic localization of inhibitory glycine receptors. J Physiol (Paris) 88:243–248

    CAS  Google Scholar 

  • Beyer C, Roberts LA, Komisaruk BR (1985) Hyperalgesia induced by altered glycinergic activity at the spinal cord. Life Sci 37:875–882

    PubMed  CAS  Google Scholar 

  • Beyer C, Komisaruk BR, Lòpez-Colomè A, Caba M (1992) Administration of AP5, a glutamate antagonist, unmasks glycine analgesic action in the rat. Pharmacol Biochem Behav 42:229–232

    PubMed  CAS  Google Scholar 

  • Blessing WW (1990) Distribution of glutamate decarboxylase-containing neurons in rabbit medulla oblongata with attention to intramedullary and spinal projections. Neuroscience 37:171–185

    PubMed  CAS  Google Scholar 

  • Bohlhalter S, Mohler H, Fritschy J-M (1994) Inhibitory neurotransmission in rat spinal cord: co-localization of glycine- and GABAA-receptors at GABAergic synaptic contacts demonstrated by triple immunofluorescence staining. Brain Res 642:59–69

    PubMed  CAS  Google Scholar 

  • Boiser DC, Blythin DJ, Chapman RW, Egan RW, Hey JA, Rizzo C, Kuo S-C, Kreutner W (1995) The pharmacology of SCH 50911: a novel, orally-active GABA-B receptor antagonist. J Pharmacol Exp Ther 274:1393–1398

    Google Scholar 

  • Bonanno G, Raiteri M (1993) Multiple GABAB receptors. Trends Pharmacol Sci 14:259–261

    PubMed  CAS  Google Scholar 

  • Bormann J (1988) Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci 11:112–116

    PubMed  CAS  Google Scholar 

  • Bormann J, Feigenspan A (1995) GABAC receptors. Trends Neuroscience 18:515–519

    CAS  Google Scholar 

  • Bourgoin S, Pohl M, Benoliel JJ, Maugorgne A, Collin E, Hamon M, Cesselin F (1992)γ-Aminobutyric acid, through GABAA receptors, inhibits the potassium-stimulated release of calcitonin gene-related peptide — but not that of substance P-like material from rat spinal cord slices. Brain Res 583:344–348

    PubMed  CAS  Google Scholar 

  • Bowery NG (1989) GABAB receptors and their significance in mammalian pharmacology. Trends Pharmacol Sci 10:401–407

    PubMed  CAS  Google Scholar 

  • Bowery NG (1993) GABAB receptor pharmacology. Annu Rev Pharmacol Toxicol 33:109–147

    PubMed  CAS  Google Scholar 

  • Bowery NG, Hudson AL, Price GW (1987) GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 20:365–383

    PubMed  CAS  Google Scholar 

  • Burt DR, Kamatchi GL (1991) GABAA receptor subtypes: from pharmacology to molecular biology. FASEB J 5:2916–2923

    PubMed  CAS  Google Scholar 

  • Carlton SM, Hayes ES (1990) Light microscopic and ultrastructural analysis of GABA-immunoreactive profiles in the monkey spinal cord. J Comp Neurol 300:162–182

    PubMed  CAS  Google Scholar 

  • Carlton SM, Westlund KN, Zhang D, Willis WD (1992) GABA-immunoreactive terminals synapse on primate spinothalamic tract cells. J Comp Neurol 322:528–537

    PubMed  CAS  Google Scholar 

  • Castro-Lopes JM, Tavares I, Tölle TR, Coito A, Coimbra A (1992) Increase in GAB Aergic cells and GAB A levels in the spinal cord in unilateral inflammation of the hindlimb in the rat. Eur J Neurosci 4:296–301

    PubMed  Google Scholar 

  • Castro-Lopes JM, Tavares I, Coimbra A (1993) GABA decreases in the spinal cord dorsal horn after peripheral neurectomy. Brain Res 620:287–291

    PubMed  CAS  Google Scholar 

  • Castro-Lopes JM, Tavares I, Tölle TR, Coimbra A (1994a) Carrageenan-induced inflammation of the hind foot provokes a rise of GABA-immunoreactive cells in the rat spinal cord that is prevented by peripheral neurectomy or neonatal capsaicin treatment. Pain 56:193–201

    PubMed  CAS  Google Scholar 

  • Castro-Lopes JM, Tölle TR, Pan B, Zieglgänsberger W (1994b) Expression of GAD mRNA in spinal cord neurons of normal and monoarthritic rats. Mol Brain Res 26:169–176

    PubMed  CAS  Google Scholar 

  • Castro-Lopes JM, Malcangio M, Pan B, Bowery NG (1995) Complex changes of GABAA and GABAB receptor binding in the spinal cord dorsal horn following peripheral inflammation or neurectomy. Brain Res 679:289–297

    PubMed  CAS  Google Scholar 

  • Cho HJ, Basbaum AI (1991) GABAergic circuitry in the rostral ventral medulla of the rat and its relationship to descending antinociceptive controls. J Comp Neurol 303:316–328

    PubMed  CAS  Google Scholar 

  • Clavier N, Lombard M-C, Besson J-M (1992) Benzodiazepines and pain: effects of midazolam on the activities of nociceptive non-specific dorsal horn neurons in the rat spinal cord. Pain 48:61–71

    PubMed  CAS  Google Scholar 

  • Crawford ME, Jensen FM, Toftdahl DB, Madsen JB (1993) Direct spinal effect of intrathecal and extradural midazolam on visceral noxious stimulation in rabbits. Br J Anaesth 70:642–646

    PubMed  CAS  Google Scholar 

  • Daly EC (1990) The biochemistry of glycinergic neurons. In: Ottersen OP, Storm-Mathiesen J (eds) Glycine neurotransmission. Wiley, Chicester, pp 25–66

    Google Scholar 

  • Depaulis A, Morgan MM, Liebeskind JC (1987) GABAergic modulation of the analgesic effect of morphine microinjected in the ventral periaqueductal grey matter of the rat. Brain Res 436:223–228

    PubMed  CAS  Google Scholar 

  • Désarmenien M, Feltz P, Occhipinti G, Santangelo F, Schlicter R (1984) Coexistence of GABAA and GABAB receptors on A<i>δ</i> and C primary afferents. Br J Pharmacol 81:327–333

    PubMed  Google Scholar 

  • Dickenson AH, Brewer CM, Hayes NA (1985) Effects of topical baclofen on C fibre-evoked neuronal activity in the rat dorsal horn. Neuroscience 14:557–562

    PubMed  CAS  Google Scholar 

  • Dirig DM, Yaksh TL (1995) Intrathecal baclofen and muscimol, but not midazolam are antinociceptive in the rat-formalin model. J Pharmacol Exp Ther 275:219–227

    PubMed  CAS  Google Scholar 

  • Drower EJ, Hammond DL (1988) GABAergic modulation of nociceptive threshold: effects of THIP and bicuculline microinjected in the ventral medulla of the rat. Brain Res 450:316–324

    PubMed  CAS  Google Scholar 

  • Frenk H, Bossut D, Urca G, Mayer DJ (1988) Is substance P a primary afferent neurotransmitter for nociceptive input? I. Analysis of pain-related behaviors resulting from intrathecal administration of substance P and 6 excitatory compounds. Brain Res 455:223–231

    PubMed  CAS  Google Scholar 

  • Fritschy JM, Mohler H (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 359:154–194

    PubMed  CAS  Google Scholar 

  • Fuji K, Senba E, Fuji S, Nomura I, Wu J-Y, Ueda Y, Tohyama M (1985) Distribution, ontogeny and projections of cholecystokinin-8, vasoactive intestinal polypeptide and <i>γ</i>-aminobutyrate-containing neuron systems in the rat spinal cord: an immuno-histochemical study. Neuroscience 14:881–894

    PubMed  CAS  Google Scholar 

  • Gao B, Fritschy JM, Benke D, Mohler H (1993) Neuron-specific expression of GABAA-receptor subtypes: differential association of the <i>α</i>1- and <i>α</i>3-subunits with serotonergic and GABAergic neurons. Neuroscience 54:881–892

    PubMed  CAS  Google Scholar 

  • Go VLW, Yaksh TL (1987) Release of substance P from the cat spinal cord. J Physiol (Lond) 391:141–167

    CAS  Google Scholar 

  • Hama AT, Fritschy J-M, Seighart W, Hammond DL (1995) GABAA recetpor subunits on bulbospinal neurons of the rat. Soc Neurosci Abstr 21:1639

    Google Scholar 

  • Hammond DL (1986) Control systems for nociceptive afferent processing: the descending inhibitory pathways. In: Yaksh TL (ed) Spinal afferent processing. Plenum, New York, pp 363–390

    Google Scholar 

  • Hammond DL, Drower EJ (1984) Effects of intrathecally administered THIP, baclofen and muscimol on nociceptive threshold. Eur J Pharmacol 103:121–125

    PubMed  CAS  Google Scholar 

  • Hammond DL, Washington JD (1993) Antagonism of L-baclofen-induced antinociception by CGP 35,348 in the spinal cord of the rat. Eur J Pharmacol 234:255–262

    PubMed  CAS  Google Scholar 

  • Hao J-X, Xu X-J, Aldskogius H, Seiger Å, Wiesenfeld-Hallin Z (1991) Allodynia-like effect in rat after ischaemic spinal cord injury photochemically induced by laser irradiation. Pain 45:175–185

    PubMed  CAS  Google Scholar 

  • Hao J-X, Xu X-J, Yu Y-X, Seiger A, Wiesenfeld-Hallin Z (1992) Baclofen reverses the hypersensitivity of dorsal horn wide dynamic range neurons to mechanical stimulation after transient spinal cord ischemia: implications for a tonic GABAergic inhibitory control of myelinated fiber input. J Neurophysiol 68:392–396

    PubMed  CAS  Google Scholar 

  • Hao J-X, Xu X-J, Wiesenfeld-Hallin Z (1994) Intrathecal <i>γ</i>-aminobutyric acidB (GABAB) receptor antagonist CGP 35348 induces hypersensitivity to mechanical stimuli in the rat. Neurosci Lett 182:299–302

    PubMed  CAS  Google Scholar 

  • Hayes ES, Carlton SM (1992) Primary afferent interactions: analysis of calcitonin gene-related peptide-immunoreactive terminals in contact with unlabeled and GABA-immunoreactive profiles in the monkey dorsal horn. Neuroscience 47:873–896

    PubMed  CAS  Google Scholar 

  • Heinricher MM, Kaplan HJ (1991) GABA-mediated inhibition in rostral ventromedial medulla: role in nociceptive modulation in the lightly anesthetized rat. Pain 47:105–113

    PubMed  CAS  Google Scholar 

  • Heinricher MM, Tortorici V (1994) Interference with GABA transmission in the rostral ventromedial medulla: disinhibition of off-cells as a central mechanism in nociceptive modulation. Neuroscience 63:533–546

    PubMed  CAS  Google Scholar 

  • Henry JL (1982) Effects of intravenously administered enantiomers of baclofen on functionally identified units in lumbar dorsal horn of the spinal cat. Neuropharmacology 21:1073–1083

    PubMed  CAS  Google Scholar 

  • Holmes BB, Fujimoto JM (1994) [D-Pen2-D-Pen5]enkephalin, a delta opioid agonist, given intracerebroventricularly in the mouse produces antinociception through mediation of spinal GABA receptors. Pharmacol Biochem Behav 49:675–682

    PubMed  CAS  Google Scholar 

  • Hwang AS, Wilcox GL (1989) Baclofen, <i>γ</i>-aminobutyric acidB receptors and substance P in the mouse spinal cord. J Pharmacol Exp Ther 248:1026–1033

    PubMed  CAS  Google Scholar 

  • Ibuki T, Hama AT, Wang X-T, Pappas GD, Sagen J (1996) Loss of GABA-immunore-activity in the spinal dorsal horn of rats with peripheral nerve injury and promotion of recovery by adrenal medullary grafts. Neuroscience (in press)

    Google Scholar 

  • Jones BE, Holmes CJ, Rodriguez-Veiga E, Mainville L (1991) GABA-synthesizing neurons in the medulla: their relationship to serotonin-containing and spinally projecting neurons in the rat. J Comp Neurol 313:349–367

    PubMed  CAS  Google Scholar 

  • Jones SL (1992) Descending control of nociception. In: Light AR (ed) The initial processing of pain and its descending control: spinal and trigeminal systems. Karger, Basel, pp 201–295

    Google Scholar 

  • Jones SL, Sedivec MJ, Light AR (1990) Effects of iontophoresed opioids on physiologically characterized laminae I and II dorsal horn neurons in the cat spinal cord. Brain Res 532:160–174

    PubMed  CAS  Google Scholar 

  • Jurna I (1984) Depression of nociceptive sensory activity in the rat spinal cord due to the intrathecal administration of drugs: effects of diazepam. Neurosurgery 15:917–920

    PubMed  CAS  Google Scholar 

  • Kangrga I, Jiang M, Randic M (1991) Actions of (-) baclofen on rat dorsal horn neurons. Brain Res 562:265–275

    PubMed  CAS  Google Scholar 

  • Kerr DIB, Ong J (1992) GABA agonists and antagonists. Med Res Rev 12:593–636

    PubMed  CAS  Google Scholar 

  • Kerr DIB, Ong J (1995) GABAB receptors. Pharmacol Ther 67:187–246

    CAS  Google Scholar 

  • Kihara M, Kubo T (1989) Immunocytochemical localization of GABA containing neurons in the ventrolateral medulla oblongata of the rat. Histochemistry 91:309–314

    PubMed  CAS  Google Scholar 

  • Killian P, Holmes BB, Takemori AE, Portoghese PS, Fujimoto JM (1995) Cold water swim stress- and delta-2 opioid-induced analgesia are modulated by spinal <i>γ</i>-aminobutyric acidA receptors. J Pharmacol Exp Ther 274:730–734

    PubMed  CAS  Google Scholar 

  • Kwiat GC, Liu H, Williamson AM, Basbaum AI (1993) GABAergic regulation of noradrenergic spinal projection neurons of the A5 cell group in the rat: an electron microscopic analysis. J Comp Neurol 330:557–570

    PubMed  CAS  Google Scholar 

  • Larson AA (1989) Intrathecal GABA, glycine, taurine or beta-alanine elicits dyskinetic movement in mice. Pharmacol Biochem Behav 32:505–509

    PubMed  CAS  Google Scholar 

  • Levy RA, Proudfit HK (1979) Analgesia produced by microinjection of baclofen and morphine at brain stem sites. Eur J Pharmacol 57:43–55

    PubMed  CAS  Google Scholar 

  • Lin Q, Peng Y, Willis WD (1994) Glycine and GABAA antagonists reduce the inhibition of primate spinothalamic tract neurons produced by stimulation in periaqueductal gray. Brain Res 654:286–302

    PubMed  CAS  Google Scholar 

  • Lin Q, Peng YB, Willis WD (1996) Role of GABA receptor subtypes in inhibition of primate spinothalamic tract neurons: difference between spinal and periaqueductal gray inhibition. J Neurophysiol 75:109–122

    PubMed  CAS  Google Scholar 

  • Lovick TA (1987) Tonic GABAergic and cholinergic influences on pain control and cardiovascular control neurones in nucleus paragigantocellularis lateralis in the rat. Pain 31:401–409

    PubMed  CAS  Google Scholar 

  • Ma W, Saunders PA, Somogyi R, Poulter MO, Barker J (1993) Ontogeny of GABAA receptor subunit mRNAs in rat spinal cord and dorsal root ganglia. J Comp Neurol 338:337–359

    PubMed  CAS  Google Scholar 

  • MacDonald RL, Olsen RW (1994) GABAA receptor channels. Annu Rev Neurosci 17:569–602

    PubMed  CAS  Google Scholar 

  • Malcangio M, Bowery NG (1993) γi-aminobutyric acidB, but not <i>γ</i>-aminobutyric acidA receptor activation, inhibits electrically evoked substance P-like immunoreactivity release from the rat spinal cord in vitro. J Pharmacol Exp Ther 266:1490–1496

    PubMed  CAS  Google Scholar 

  • Malcangio M, Bowery NG (1994) Spinal cord SP release and hyperalgesia in monoarthritic rats: involvement of the GABAB receptor system. Br J Pharmacol 113:1561–1566

    PubMed  CAS  Google Scholar 

  • Malcangio M, Da Silva H, Bowery NG (1993) Plasticity of GABAB receptor in rat spinal cord detected by autoradiography. Eur J Pharmacol 250:153–156

    PubMed  CAS  Google Scholar 

  • Malosio M-L, Marquèze-Pouey B, Kuhse J, Betz H (1991) Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. EMBO J 10:2401–2409

    PubMed  CAS  Google Scholar 

  • McGowan MK, Hammond DL (1993a) Antinociception produced by microinjection of L-glutamate into the ventromedial medulla of the rat: mediation by spinal GABAA receptors. Brain Res 620:86–96

    PubMed  CAS  Google Scholar 

  • McGowan MK, Hammond DL (1993b) Intrathecal GABAB antagonists attenuate the antinociception produced by microinjection of L-glutamate into the ventromedial medulla of the rat. Brain Res 607:39–46

    PubMed  CAS  Google Scholar 

  • Millhorn DE, Hokfelt T, Seroogy K, Oertel W, Verhofstad AAJ, Wu JY (1987) Immunohistochemical evidence for colocalization of gamma-aminobutyric acid and serotonin in neurons of the ventral medulla oblongata projecting to the spinal cord. Brain Res 410:179–185

    PubMed  CAS  Google Scholar 

  • Mitchell K, Spike RC, Todd AJ (1993) An immunocytochemical study of glycine receptor and GABA in laminae I-III of rat spinal dorsal horn. J Neurosci 13:2371–2381

    PubMed  CAS  Google Scholar 

  • Miyata Y, Otsuka M (1975) Quantitative histochemistry of gamma-aminobutyric acid in cat spinal cord with special reference to presynaptic inhibition. J Neurochem 25:239–244

    PubMed  CAS  Google Scholar 

  • Moreau JL, Fields HL (1986) Evidence for GABA involvement in midbrain control of medullary neurons that modulate nociceptive transmission. Brain Res 397:37–46

    PubMed  CAS  Google Scholar 

  • Mott DD, Lewis DV (1994) The pharmacology and function of central GABAB receptors. Int Rev Neurobiol 36:97–223

    PubMed  CAS  Google Scholar 

  • Nagai T, McGeer PL, McGeer EG (1983) Distribution of GABA-T-intensive neurons in the rat forebrain and midbrain. J Comp Neurol 218:220–238

    PubMed  CAS  Google Scholar 

  • Nagai T, Maeda T, Imai H, McGeer PL, McGeer EG (1985) Distribution of GABA-T-intensive neurons in the rat hindbrain. J Comp Neurol 231:260–269

    PubMed  CAS  Google Scholar 

  • Nahin RL, Hylden JLK (1991) Peripheral inflammation is associated with increased glutamic acid decarboxylase immunoreactivity in the rat spinal cord. Neurosci Lett 128:226–230

    PubMed  CAS  Google Scholar 

  • Niv D, Whitwam JG, Loh L (1983) Depression of nociceptive sympathetic reflexes by the intrathecal administration of midazolam. Br J Anaesth 55:541–547

    PubMed  CAS  Google Scholar 

  • Niv D, Davidovich S, Geller E, Urca G (1988) Analgesic and hyperalgesic effects of midazolam: dependence on route of administration. Anesth Analg 67:1169–1173

    PubMed  CAS  Google Scholar 

  • Olivéras JL (1995) Cortical application of picrotoxin as a model of central pain in the rat. Soc Neurosci Abstr 21:650

    Google Scholar 

  • Olivéras J-L, Montagne-Clavel J (1994) The GABAA receptor antagonist picrotoxin induces a “pain-like” behavior when administered into the thalamic reticular nucleus of the behaving rat: a possible model for “central” pain? Neurosci Lett 179:21–24

    PubMed  Google Scholar 

  • Olsen RW, McCabe RT, Wamsley JK (1990) GABAA receptor subtypes: autoradiographic comparison of GABA, benzodiazepine and convulsant binding sites in the rat central nervous system. J Chem Neuroanat 3:59–76

    PubMed  CAS  Google Scholar 

  • Ottersen OP, Storm-Mathiesen J (1984) Glutamate-and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J Comp Neurol 229:374–392

    PubMed  CAS  Google Scholar 

  • Palacios JM, Wamsley JK, Kuhar MJ (1981) High affinity GABA receptors-autoradiographic localization. Brain Res 222:285–307

    PubMed  CAS  Google Scholar 

  • Pan ZZ, Williams JT, Osborne PB (1990) Opioid actions on single nucleus raphe magnus neurons from rat and guinea-pig in vitro. J Physiol (Lond) 427:519–532

    CAS  Google Scholar 

  • Patrick JT, McBride WJ, Feiten DL (1983) Distribution of glycine, GABA, aspartate, and glutamate in the rat spinal cord. Brain Res Bull 10:415–418

    PubMed  CAS  Google Scholar 

  • Poore LH, Helmstetter FJ (1994) Forebrain modulation of nociceptive reflexes: effects of GABA antagonists in the amygdala. Soc Neurosci Abstr 20:767

    Google Scholar 

  • Price GW, Wilkin GP, Turnbull MJ, Bowery NG (1984) Are baclofen-sensitive GABAB receptors present on primary afferent terminals of the spinal cord? Nature 307:71–74

    PubMed  CAS  Google Scholar 

  • Probst A, Cortés R, Palacios JM (1986) The distribution of glycine receptors in the human brain. A light microscopic autoradiographic study using [3H]strychnine. Neuroscience 17:11–35

    PubMed  CAS  Google Scholar 

  • Rabow LE, Russek SJ, Farb DH (1995) From ion currents to genomic analysis: recent advances in GABAA receptor research. Synapse 21:189–274

    PubMed  CAS  Google Scholar 

  • Rady JJ, Fujimoto JM (1995) Spinal GABA receptors mediate brain delta opioid analgesia in Swiss Webster mice. Pharmacol Biochem Behav 51:655–659

    PubMed  CAS  Google Scholar 

  • Reichling DB, Basbaum AI (1990a) Contribution of brainstem GABAergic circuitry to descending antinociceptive controls. I. GABA-immunoreactive projection neurons in the periaqueductal gray and nucleus raphe magnus. J Comp Neurol 302:370–377

    PubMed  CAS  Google Scholar 

  • Reichling DB, Basbaum AI (1990b) Contribution of brainstem GABAergic circuitry to descending antinociceptive controls. II. Electron microscopic immunocytochemical evidence of GABAergic control over the projection from the periaqueductal gray to the nucleus raphe magnus in the rat. J Comp Neurol 302:378–393

    PubMed  CAS  Google Scholar 

  • Renno WM, Mullett MA, Beitz AJ (1992) Systemic morphine reduces GABA release in the lateral but not the medial portion of the midbrain periaqueductal gray of the rat. Brain Res 594:221–232

    PubMed  CAS  Google Scholar 

  • Richards JG, Schoch P, Haring P, Takacs B, Mohler H (1987) Resolving GABAA/benzodiazepine receptors: cellular and subcellular localization in the CNS with monoclonal antibodies. J Neurosci 7:1866–1886

    PubMed  CAS  Google Scholar 

  • Roberts LA, Beyer C, Komisaruk BR (1986) Nociceptive responses to altered GABAergic activity at the spinal cord. Life Sci 39:1667–1674

    PubMed  CAS  Google Scholar 

  • Roberts WA, Eaton SA, Salt TE (1992) Widely distributed GABA-mediate afferent inhibition processes within the ventrobasal thalamus of rat and their possible relevance to pathological pain states and somatotopic plasticity. Exp Brain Res 89:363–372

    PubMed  CAS  Google Scholar 

  • Romandini S, Samanin R (1984) Muscimol injection in the nucleus raphe dorsalis blocks the antinociceptive effect of morphine in rats: apparent lack of 5-hydroxytryptamine involvement in muscimol’s effects. Br J Pharmacol 81:25–29

    PubMed  CAS  Google Scholar 

  • Sandkühler J, Willman E, Fu Q-G (1989) Blockade of GABAA receptors in the midbrain periaqueductal gray abolishes nociceptive spinal dorsal horn neuronal activity. Eur J Pharmacol 160:163–166

    PubMed  Google Scholar 

  • Sawynok J, Dickson C (1985) D-Baclofen is an antagonist at baclofen receptors mediating antinociception in the spinal cord. Pharmacology 31:248–259

    PubMed  CAS  Google Scholar 

  • Sawynok J, Kato N, Havlicek V, LaBella FS (1982) Lack of effect of baclofen on substance P and somatostatin release from the spinal cord in vitro. Naunyn Schmied Arch Pharmacol 319:78–81

    CAS  Google Scholar 

  • Serrao JM, Stubbs SC, Goodchild CS, Gent JP (1989) Intrathecal midazolam and fentanyl in the rat: evidence for different spinal antinociceptive effects. Anesthesiology 70:780–786

    PubMed  CAS  Google Scholar 

  • Sherman SE, Loomis CW (1994) Morphine insensitive allodynia is produced by intrathecal strychnine in the lightly anesthetized rat. Pain 56:17–29

    PubMed  CAS  Google Scholar 

  • Sieghart W (1995) Structure and pharmacology of <i>γ</i>-aminobutyric acidA receptor subtypes. Pharmacol Rev 47:181–234

    PubMed  CAS  Google Scholar 

  • Singer E, Placheta P (1980) Reduction of [3H]muscimol binding sites in rat dorsal spinal cord after neonatal capsaicin. Brain Res 202:484–487

    PubMed  CAS  Google Scholar 

  • Sivilotti L, Woolf CJ (1994) The contribution of GABAA and glycine receptors to central sensitization: disinhibition and touch-evoked allodynia in the spinal cord. J Neurophysiol 72:169–179

    PubMed  CAS  Google Scholar 

  • Sluka KA, Willis WD, Westlund KN (1993) Joint inflammation and hyperalgesia are reduced by spinal bicuculline. Neuroreport 5:109–112

    CAS  Google Scholar 

  • Sluka KA, Willis WD, Westlund KN (1994) Inflammation-induced release of excitatory amino acids is prevented by spinal administration of a GABAA but not by a GABAB receptor antagonist in rats. J Pharmacol Exp Ther 271:76–82

    PubMed  CAS  Google Scholar 

  • Smith GD, Harrison SM, Birch PJ, Elliott PJ, Malcangio M, Bowery NG (1994) Increased sensitivity to the antinociceptive activity of (±) baclofen in an animal model of chronic neuropathic, but not chronic inflammatory hyperalgesia. Neuropharmacology 33:1103–1108

    PubMed  CAS  Google Scholar 

  • Sorkin LS, McAdoo DJ, Willis WD (1993) Raphe magnus stimulation-induced antinociception in the cat is associated with release of amino acids as well as serotonin in the lumbar dorsal horn. Brain Res 618:95–108

    PubMed  CAS  Google Scholar 

  • Stephenson FA (1995) The GABAA receptors. Biochem J 310:1–9

    PubMed  CAS  Google Scholar 

  • Sugimoto T, Bennett GJ, Kajander KC (1990) Transsynaptic degeneration in the superficial dorsal horn after sciatic nerve injury: effects of a chronic constriction injury, transection, and strychnine. Pain 42:205–213

    PubMed  CAS  Google Scholar 

  • Thomas DA, McGowan MK, Hammond DL (1995) Microinjection of baclofen in the ventromedial medulla of the rat produces antinociception or hyperalgesia. J Pharmacol Exp Ther 275:274–284

    PubMed  CAS  Google Scholar 

  • Thomas DA, Naverette I, Graham BA, McGowan MK, Hammond DL (1996) Antinociception produced by systemic R(+)-baclofen hydrochloride is attenuated by CGP 35348 administered to the spinal cord or ventromedial medulla. Brain Res 718:129–137

    PubMed  CAS  Google Scholar 

  • Todd AJ, Lochhead V (1990) GABA-like immunoreactivity in type I glomeruli of rat substantia gelatinosa. Brain Res 514:171–174

    PubMed  CAS  Google Scholar 

  • Todd AJ, McKenzie J (1989) GABA-immunoreactive neurons in the dorsal horn of the rat spinal cord. Neuroscience 31:799–806

    PubMed  CAS  Google Scholar 

  • Todd AJ, Sullivan AC (1990) Light microscope study of the coexistence of GABA-like and glycine-like immunoreactivities in the spinal cord of the rat. J Comp Neurol 296:496–505

    PubMed  CAS  Google Scholar 

  • van den Pol AN, Gorcs T (1988) Glycine and glycine receptorimmunoreactivity in brain and spinal cord. J Neurosci 8:472–492

    PubMed  Google Scholar 

  • Vandenberg RJ, Schofield PR (1994) Inhibitory ligand-gated ion channel receptors: molecular biology and pharmacology of GABAA and glycine receptors. In: Peracchia C (ed) Handbook of membrane channels: molecular and cellular physiology. Academic, San Diego, pp 317–332

    Google Scholar 

  • Waldvogel HJ, Faull RLM. Jansen KLR, Dragunow M, Richards JG, Mohler H, Street P (1990) GABA, GABA receptors and benzodiazepine receptors in the human spinal cord: an autoradiographic and immunohistochemical study at the light and electron microscopic levels. Neuroscience 39:361–385

    Google Scholar 

  • Willcockson WS, Chung JM, Hori Y, Lee KH, Willis WD (1984) Effects of iontophoretically released amino acids and amines on primate spinothalamic tract cells. J Neurosci 4:732–740

    PubMed  CAS  Google Scholar 

  • Williams FG, Beitz AJ (1990) Ultrastructural morphometric analysis of GABA-immunoreactive terminals in the ventrocaudal periaqueductal grey: analysis of the relationship of GAB A terminals and the GABAA receptor to periaqueductal greyraphe magnus projection neurons. J Neurocytol 19:686–696

    PubMed  CAS  Google Scholar 

  • Wilson PR, Yaksh TL (1978) Baclofen is antinociceptive in the spinal intrathecal space of animals. Eur J Pharmacol 51:323–330

    PubMed  CAS  Google Scholar 

  • Wisden W, Laurie DJ, Monyer H, Seeburg PH (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci 12:1040–1062

    PubMed  CAS  Google Scholar 

  • Yaksh TL (1989) Behavioral and autonomic correlates of the tactile-evoked allodynia produced by spinal glycine inhibition: effects of modulatory receptor systems and excitatory amino acid antagonists. Pain 37:111–123

    PubMed  CAS  Google Scholar 

  • Yaksh TL, Reddy SVR (1981) Studies in the primate on the analgetic effects associated with intrathecal actions of opiate, alpha-adrenergic agonists and baclofen. Anesthesiology 54:451–467

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Yaksh TL (1991) Spinal pharmacology of thermal hyperesthesia induced by incomplete ligation of sciatic nerve. Anesthesiology 75:817–826

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Yaksh TL (1993) Effects of intrathecal strychnine and bicuculline on nerve compression-induced thermal hyperalgesia and selective antagonism by MK-801. Pain 54:79–84

    PubMed  CAS  Google Scholar 

  • Zambotti F, Zonta N, Parenti M, Tommasi R, Vicentini L, Conci F, Mantegazza P (1982) Periaqueductal gray matter involvement in the muscimol-induced decrease of morphine antinociception. Naunyn Schmiedebergs Arch Pharmacol 318:368–369

    PubMed  CAS  Google Scholar 

  • Zambotti F, Zonta J, Tammiso R, Conci F, Hafner B, Zecca L, Ferrario P, Mantegazza P (1991) Effects of diazepam on nociception in rats. Naunyn Schmied Arch Pharmacol 344:84–89

    CAS  Google Scholar 

  • Zarbin MA, Wamsley JK. Kuhar MJ (1981) Glycine receptor: light microscopic autoradiographic localization with [3H]strychnine. J Neurosci 1:532–547

    PubMed  CAS  Google Scholar 

  • Zhang A-L, Hao J-X, Seiger Å, Xu X-J, Wiesenfeld-Hallin Z, Grant G, Aldskogius H (1994) Decreased GABA immunoreactivity in spinal cord dorsal horn neurons after transient spinal cord ischemia in the rat. Brain Res 656:187–190

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hammond, D.L. (1997). Inhibitory Neurotransmitters and Nociception: Role of GABA and Glycine. In: Dickenson, A., Besson, JM. (eds) The Pharmacology of Pain. Handbook of Experimental Pharmacology, vol 130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60777-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60777-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64550-1

  • Online ISBN: 978-3-642-60777-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics