Skip to main content

Realzeitfähige Multiagentenarchitektur für autonome Fahrzeuge

  • Conference paper
Autonome Mobile Systeme 1999

Part of the book series: Informatik aktuell ((INFORMAT))

  • 256 Accesses

Zusammenfassung

Das Aufgabengebiet des Autonomen Fahrens bringt neben Herausforderungen bei der Bildverarbeitung und den HardwareKomponenten auch zahlreiche Ansprüche an die Software-Architektur mit sich. Dies gilt umso mehr, je komplexer und umfangreicher diese Systeme aufgebaut sind.

In diesem Beitrag wird eine Multiagentenarchitektur beschrieben, welche in der Lage ist, Software-Module dynamisch zu konfigurieren und untereinander zu vernetzen. Es wird gezeigt, daß die Architektur in der Lage ist, den Ansprüchen komplexer autonomer Fahrsysteme gerecht zu werden. Dazu gehören Punkte wie Echtzeitfähigkeit, Skalierbarkeit, Parallelverarbeitung, Konfigurierbarkeit und Ressourcenverteilung. Als erste Anwendung wurde ein autonomer Stop&Go Betrieb in der Innenstadt verwirklicht.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. E. D. Dickmanns and A. Zapp, “A curvature-based scheme for improving road vehicle guidance by computer vision,” in SPIE Conference on Mobile Robots, 1986, vol. 727, pp. 161–167.

    Google Scholar 

  2. Berthold Ulmer, “VITA II — Active Collision Avoidance in Real Traffic,” in Proceedings of the Intelligent Vehicles’ 94 Symposium, Oct. 1994, pp. 1–6.

    Google Scholar 

  3. Dirk Reichardt, Kontinuierliche Verhaltenssteuerung eines autonomen Fahrzeugs in dynamischer Umgebung, Ph.D. thesis, Universität Kaiserslautern, Jan. 1996, Forschung F1M/IA Daimler-Benz.

    Google Scholar 

  4. M. Maurer and E. D. Dickmanns, “A SYSTEM ARCHITECTURE FOR AUTONOMOUS VISUAL ROAD VEHICLE GUIDANCE,” in IEEE Conference on Intelligent Transportation Systems, Nov. 1997, pp. 578–583.

    Google Scholar 

  5. G. O’Hare and N. Jennings, Eds., Foundations of Distributed Artificial Intelligence, John Wiley & Sons, 1996.

    Google Scholar 

  6. S. Görzig, CPPvm: C++ Interface to PVM (Parallel Virtual Machine), 1999, http://www.informatik.uni-stuttgart.de/ipvr/bv/cppvm.

    Google Scholar 

  7. Reid G. Smith, “The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver,” in IEEE Transaction on Computers, 1980.

    Google Scholar 

  8. U. Franke and I. Kutzbach, “Fast Stereo based Object Detection for Stop&Go Traffic,” in IEEE Conference on Intelligent Transportation Systems, Tokyo, Oct. 1996, pp. 339–344.

    Google Scholar 

  9. C. Wöhler and J. K. Anlauf, “An Adaptable Time Delay Neural Network Algorithm for Image Sequence Analysis,” Nov. 1999.

    Google Scholar 

  10. C. Wöhler, U. Kressel, J. Schürmann, and J. K. Anlauf, “Dimensionality Reduction by Local Processing,” in European Symposium on Artificial Neural Networks, 1999, pp. 237–244.

    Google Scholar 

  11. U. Franke, D. Gavrila, S. Görzig, F. Lindner, F. Paetzold, and C. Wöhler, “Autonomous Driving Goes Downtown,” IEEE Intelligent Systems & their applications, vol. 13, no. 6, pp. 40–48, 1998.

    Article  Google Scholar 

  12. C. Papageorgiou, T. Evgeniou, and T. Poggio, “A Trainable Pedestrian Detection System,” in IEEE Conference on Intelligent Vehicles, Oct. 1998, pp. 241–246.

    Google Scholar 

  13. F. Paetzold and U. Franke, “Road Recognition in Urban Environment,” in IEEE Conference on Intelligent Vehicles, Oct. 1998.

    Google Scholar 

  14. Uwe Franke, “Real time 3D-Road Modeling for autonomous vehicle guidance,” in Selected Papers of the 7th Scandinavian Conference on Image Analysis, P. Johnason and S. Olsen, Eds., pp. 277–284. World Scientific Publishing Company, 1992.

    Google Scholar 

  15. U. Franke, S. Görzig, F. Lindner, D. Mehren, and F. Paetzold, “STEPS TOWARDS AN INTELLIGENT VISION SYSTEM FOR DRIVER ASSISTANCE IN URBAN TRAFFIC,” in IEEE Conference on Intelligent Transportation Systems, Nov. 1997, pp. 601–606.

    Google Scholar 

  16. W. Ritter, F. Stein, and R. Janssen, “Traffic Sign Recognition Using Colour Information,” in Math. Comput. Modelling, No. 4–7, 1995, vol. 22, pp. 149–161.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Görzig, S., Gern, A., Levi, P. (2000). Realzeitfähige Multiagentenarchitektur für autonome Fahrzeuge. In: Schmidt, G., Hanebeck, U., Freyberger, F. (eds) Autonome Mobile Systeme 1999. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59708-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59708-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66732-2

  • Online ISBN: 978-3-642-59708-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics