Skip to main content

Proteolytic Processing of the Amyloid Precursor Protein of Alzheimer’s Disease

  • Chapter
Proteases as Targets for Therapy

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 140))

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease and the most common form of progressive dementia in the elderly. It is characterized by a progressive loss of memory, declining cognitive function and, ultimately, leads to decreasing physical functions and death. The neuropathological hallmarks of AD are the senile plaques and the neurofibrillary tangles, which are botprotein aggregates deposited in the brain. The neurofibrillary tangles represent intraneuronal bundles of paired helical filaments that mainly consist of the microtubule-associated protein tau in an abnormally phosphorylated form (for review on tau see GOEDERT et al. 1996). The extracellular amyloid plaques mainly consist of the 42-residue-long amyloid β-peptide (Aβ, βA4; GLENNER and WONG 1984; MASTERS et al. 1985), which is proteolytically derived from the much larger amyloid precursor protein (APP, AβPP, βAPP; KANG et al. 1987). The generation and deposition of Aβ seem to be at the origin of the disease and are believed to trigger a complex pathological cascade that causes neuronal dysfunction, the appearance of the neurofibrillary tangles and, finally, the onset of the disease. This current view for the central role of Aβ in the pathogenesis of AD is supported by a wealth of data (for review, see HARDY 1997), including mutations and a polymorphism in four genes that lead to an inherited form or an early-onset form of AD. On the cellular level, these mutations either lead to an enhanced generation of the Aβ-peptide or to an increased rate of its aggregation. Consequently, approaches used to develop a causative therapy for AD try to determine in detail the proteolytic mechanisms that lead to the release of Aβ from APP and the mechanisms of Aβ aggregation and A/3 neurotoxicity (for reviews about Aβ aggregation and neurotoxicity see HARPER and LANSBURY 1997 and YANKNER 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allsop D, Christie G, Gray C, et al. (1997) Studies on inhibition of β-amyloid formation in APP751-transfected IMR-32 cells, and SPA4CT-transfected SHSY5Y cells. In: Iqbal K, Winblad B, Nishimura T, Takeda M, Wisniewski HM (eds) Alzheimer’s disease: biology, diagnosis and therapeutics. John Wiley & Sons Ltd, Chichester, pp 717–727

    Google Scholar 

  • Arribas J, Massague J (1995) Transforming growth factor-alpha and beta-amyloid precursor protein share a secretory mechanism. J Cell Biol 128:433–441

    Article  PubMed  CAS  Google Scholar 

  • Arribas J, Coodly L, Vollmer P, et al. (1996) Diverse cell surface protein ectodomains are shed by a system sensitive to metalloprotease inhibitors. J Biol Chem 271:11376–11382

    Article  PubMed  CAS  Google Scholar 

  • Black RA, Rauch CT, Kozlosky CJ, et al. (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385:729–733

    Article  PubMed  CAS  Google Scholar 

  • Busciglio J, Gabuzda DH, Matsudaira P, Yankner BA (1993) Generation of betaamyloid in the secretory pathway in neuronal and nonneuronal cells. Proc Natl Acad Sci USA 90:2092–2096

    Article  PubMed  CAS  Google Scholar 

  • Buxbaum JD, Gandy SE, Cicchetti P, et al. (1990) Processing of Alzheimer beta/A4 amyloid precursor protein: modulation by agents that regulate protein phosphorylation. Proc Natl Acad Sci USA 87:6003–6006

    Article  PubMed  CAS  Google Scholar 

  • Cai XD, Golde TE, Younkin SG (1993) Release of excess amyloid β protein from a mutant amyloid β protein precursor. Science 259:514–516

    Article  PubMed  CAS  Google Scholar 

  • Chartier-Harlin MC, Crawford F, Houlden H, et al. (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature 353:844–846

    Article  PubMed  CAS  Google Scholar 

  • Checler F (1995) Processing of the b-amyloid precursor protein and its regulation in Alzheimer’s disease. J Neurochem 65:1431–1444

    Article  PubMed  CAS  Google Scholar 

  • Citron M, Oltersdorf T, Haass C, et al. (1992) Mutation of the ß-amyloid precursor protein in familial Alzheimer’s disease increases β-protein production. Nature 360:672–674

    Article  PubMed  CAS  Google Scholar 

  • Citron M, Teplow DB, Selkoe DJ (1995) Generation of amyloid beta protein from its precursor is sequence specific. Neuron 14:661–670

    Article  PubMed  CAS  Google Scholar 

  • Citron M, Diehl TS, Capell A, et al. (1996a) Inhibition of amyloid β-protein production in neural cells by the serine protease inhibitor AEBSF. Neuron 17:171–179

    Article  PubMed  CAS  Google Scholar 

  • Citron M, Diehl TS, Gordon G, et al. (1996b) Evidence that the 42-and 40-amino acid forms of amyloid beta protein are generated from the beta-amyloid precursor protein by different protease activities. Proc Natl Acad Sci USA 93:13170–13175

    Article  PubMed  CAS  Google Scholar 

  • Cook DG, Forman MS, Sung JC, et al. (1997) Alzheimer’s A beta(1–42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nat Med 3:1021–1023

    Article  PubMed  CAS  Google Scholar 

  • De Strooper B, Umans L, Van Leuven F, Van Den Berghe H (1993) Study of the synthesis and secretion of normal and artificial mutants of murine amyloid precursor protein (APP): cleavage of APP occurs in a late compartment of the default secretion pathway. J Cell Biol 121:295–304

    Article  PubMed  Google Scholar 

  • De Strooper B, Saftig P, Craessaerts K, et al. (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391:387–390

    Article  PubMed  Google Scholar 

  • Dyrks T, Dyrks E, Monning U, et al. (1993) Generation of beta A4 from the amyloid protein precursor and fragments thereof. FEBS Lett 335: 89–93

    Article  PubMed  CAS  Google Scholar 

  • Eckman CB, Mehta ND, Crook R, et al. (1997) A new pathogenic mutation in the APP gene (1716V) increases the relative proportion of A beta 42(43). Hum Mol Genet 6:2087–2089

    Article  PubMed  CAS  Google Scholar 

  • Esch FS, Keim PS, Beattie EC, et al. (1990) Cleavage of amyloid β peptide during constitutive processing of its precursor. Science 248:1122–1124

    Article  PubMed  CAS  Google Scholar 

  • Essalmani R, Guillaume JM, Mercken L, Octave JN (1996) Baculovirus-infected cells do not produce the amyloid peptide of Alzheimer’s disease from its precursor. FEBS Lett 389:157–161

    Article  PubMed  CAS  Google Scholar 

  • Evin G, Beyreuther K, Masters CL (1994) Alzheimer’s disease amyloid precursor protein (AβPP): proteolytic processing, secretases and βA4 amyloid production. Amyloid. Int J Exp Clin Invest 1:263–280

    CAS  Google Scholar 

  • Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    Article  PubMed  CAS  Google Scholar 

  • Goate A, Chartier Harlin MC, Mullan M, et al. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706

    Article  PubMed  CAS  Google Scholar 

  • Goedert M, Spillantini MG, Hasegawa M, et al. (1996) Molecular dissection of the neurofibrillary lesions of Alzheimer’s disease. Cold Spring Harb Symp Quant Biol 61:565–573

    Article  PubMed  CAS  Google Scholar 

  • Gravina SA, Ho LB, Eckman CB, et al. (1995) Amyloid beta protein (A beta) in Alzheimer’s disease brain — biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). J Biol Chem 270:7013–7016

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Koo EH, Mellon A, et al. (1992a) Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357:500–503

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Schlossmacher MG, Hung AY, et al. (1992b) Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Hung AY, Schlossmacher MG, et al. (1993) β-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J Biol Chem 268:3021–3024

    PubMed  CAS  Google Scholar 

  • Haass C, Hung AY, Selkoe DJ, Teplow DB (1994) Mutations associated with a locus for familial Alzheimer’s disease result in alternative processing of amyloid betaprotein precursor. J Biol Chem 269:17741–17748

    PubMed  CAS  Google Scholar 

  • Haass C, Lemere CA, Capell A, et al. (1995) The Swedish mutation causes early-onset Alzheimer’s disease by beta-secretase cleavage within the secretory pathway. Nat Med 1:1291–1296

    Article  PubMed  CAS  Google Scholar 

  • Hardy J (1997) The Alzheimer family of diseases: many etiologies, one pathogenesis? Proc Natl Acad Sci USA 94:2095–2097

    Article  PubMed  CAS  Google Scholar 

  • Harper JD, Lansbury PJ (1997) Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66:385–407

    Article  PubMed  CAS  Google Scholar 

  • Hartmann T, Bieger SC, Brühl B, et al. (1997) Distinct sites of intracellular production for Alzheimer’s disease A beta40/42 amyloid peptides. Nat Med 3:1016–1020

    Article  PubMed  CAS  Google Scholar 

  • Hendriks L, van Duijn CM, Cras P, et al. (1992) Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the β-amyloid precursor protein gene. Nat Genet 1:218–221

    Article  PubMed  CAS  Google Scholar 

  • Higaki J, Quon D, Zhong Z, Cordell B (1995) Inhibition of beta-amyloid formation identifies proteolytic precursors and subcellular site of catabolism. Neuron 14: 651–659

    Article  PubMed  CAS  Google Scholar 

  • Hooper NM, Karran EH, Turner AJ (1997) Membrane protein secretases. Biochem J 321:265–279

    PubMed  CAS  Google Scholar 

  • Hung AY, Selkoe DJ (1994) Selective ectodomain phosphorylation and regulated cleavage of beta-amyloid precursor protein. EMBO J 13:534–542

    PubMed  CAS  Google Scholar 

  • Ikezu T, Trapp BD, Song KS, et al. (1998) Caveolae, plasma membrane microdomains for α-secretase-mediated processing of the amyloid precursor protein. J Biol Chem 273:10485–10495

    Article  PubMed  CAS  Google Scholar 

  • Iwatsubo T, Odaka A, Suzuki N, et al. (1994) Visualization of Aβ42(43) and Aβ40 in senile plaques with end-specific Aβ monoclonals: evidence that an initially deposited species is Aβ42(43). Neuron 13:45–53

    Article  PubMed  CAS  Google Scholar 

  • Jarrett JT, Berger EP, Lansbury PT Jr (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32:4693–4697

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Lemaire HG, Unterbeck A, et al. (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736

    Article  PubMed  CAS  Google Scholar 

  • Klafki H, Abramowski D, Swoboda R, et al. (1996) The carboxyl termini of betaamyloid peptides 1–40 and 1–42 are generated by distinct gamma-secretase activities. J Biol Chem 271:28655–28659

    Article  PubMed  CAS  Google Scholar 

  • Koo EH, Squazzo SL (1994) Evidence that production and release of amyloid betaprotein involves the endocytic pathway. J Biol Chem 269:17386–17389

    PubMed  CAS  Google Scholar 

  • Lalowski M, Golabek A, Lemere CA, et al. (1996) The “nonamyloidogenic” p3 fragment (amyloid betal7–42) is a major constituent of Down’s syndrome cerebellar preamyloid. J Biol Chem 271:33623–33631

    Article  PubMed  CAS  Google Scholar 

  • Leonhard K, Herrmann JM, Stuart RA, et al. (1996) AAA proteases with catalytic sites on opposite membrane surfaces comprise a proteolytic system for the ATP-dependent degradation of inner membrane proteins in mitochondria. EMBO J 15:4218–4229

    PubMed  CAS  Google Scholar 

  • Levy E, Carman MD, Fernandez MI, et al. (1990) Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248: 1124–1126

    CAS  Google Scholar 

  • Lichtenthaler SF, Ida N, Multhaup G, et al. (1997) Mutations in the transmembrane domain of APP altering γ-secretase specificity. Biochemistry 36:15396–15403

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K, Tomita T, Shinozaki K, et al. (1996) Familial Alzheimer’s disease-linked mutations at Val717 of amyloid precursor protein are specific for the increased secretion of A beta 42(43). Biochem Biophys Res Commun 227:730–735

    Article  PubMed  CAS  Google Scholar 

  • Masters CL, Simms G, Weinman NA, et al. (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249

    Article  PubMed  CAS  Google Scholar 

  • Moss ML, Jin SL, Milla ME, et al. (1997) Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature 385:733–736

    Article  PubMed  CAS  Google Scholar 

  • Mullan M, Crawford F, Axelman K, et al. (1992) A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of β-amyloid. Nat Genet 1:345–347

    Article  PubMed  CAS  Google Scholar 

  • Multhaup G (1997) Amyloid precursor protein, copper and Alzheimer’s disease. Biomed Pharmacother 51:105–111

    Article  PubMed  CAS  Google Scholar 

  • Murrell J, Farlow M, Ghetti B, Benson MD (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science 254:97–99

    Article  PubMed  CAS  Google Scholar 

  • Parvathy S, Hussain I, Karran EH, et al. (1998) Alzheimer’s amyloid precursor protein a-secretase is inhibited by hydroxamic acid-based zinc metalloprotease inhibitors: similarities to the angiotensin converting enzyme secretase. Biochemistry 37: 1680–1685

    Article  PubMed  CAS  Google Scholar 

  • Peraus GC, Masters CL, Beyreuther K (1997) Late compartments of amyloid precursor protein transport in SY5Y cells are involved in beta-amyloid secretion. J Neurosci 17:7714–7724

    PubMed  CAS  Google Scholar 

  • Rawson RB, Zelenski NG, Nijhawan D, et al. (1997) Complementation cloning of S2P, a gene encoding a Putative metalloprotease required for intramembrane cleavage of SREBPs. Mol Cell 1:47–57

    Article  PubMed  CAS  Google Scholar 

  • Ross SL, Martin F, Simonet L, et al. (1998) Amyloid precursor protein processing in sterol regulatory element-binding protein site 2 protease-deflcient Chinese hamster ovary cells. J Biol Chem 273:15309–15312

    Article  PubMed  CAS  Google Scholar 

  • Saftig P, Peters C, von Figure K, et al. (1996) Amyloidogenic processing of human amyloid precursor protein in hippocampal neurons devoid of cathepsin D. J Biol Chem 271:27241–27244

    Article  PubMed  CAS  Google Scholar 

  • Sambamurti K, Shioi J, Anderson JP, et al. (1992) Evidence for intracellular cleavage of the Alzheimer’s amyloid precursor in PC12 cells. J Neurosci Res 33:319–329

    Article  PubMed  CAS  Google Scholar 

  • Sandbrink R, Masters CL, Beyreuther K (1994) Beta A4-amyloid protein precursor mRNA isoforms without exon 15 are ubiquitously expressed in rat tissues including brain, but not in neurons. J Biol Chem 269:1510–1517

    PubMed  CAS  Google Scholar 

  • Scheuner D, Eckman C, Jensen M, et al. (1996) Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2:864–870

    Article  PubMed  CAS  Google Scholar 

  • Schroeter EH, Kisslinger JA, Kopan R (1998) Notch-1 signalling requires ligandinduced proteolytic release of intracellular domain. Nature 393:382–386

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (1994) Cell biology of the amyloid β-protein precursor and the mechanism of Alzheimer’s disease. Ann Rev Cell Dev Biol 10:373–403

    Article  CAS  Google Scholar 

  • Seubert P, Vigo-Pelfrey C, Esch F, et al. (1992) Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 359:325–327

    Article  PubMed  CAS  Google Scholar 

  • Shivers BD, Hilbich C, Multhaup G, et al. (1988) Alzheimer’s disease amyloidogenic glycoprotein: expression pattern in rat brain suggests a role in cell contact. EMBO J 7:1365–1370

    PubMed  CAS  Google Scholar 

  • Shoji M, Golde TE, Ghiso J, et al. (1992) Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 258:126–129

    Article  PubMed  CAS  Google Scholar 

  • Simons M, Destrooper B, Multhaup G, et al. (1996) Amyloidogenic processing of the human amyloid precursor protein in primary cultures of rat hippocampal neurons. J Neurosci 16:899–908

    PubMed  CAS  Google Scholar 

  • Sisodia SS (1992) Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proc Natl Acad Sci USA 89:6075–6079

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter WJ, Roses AD (1996) Apolipoprotein E and Alzheimer’s disease. Annu Rev Neurosci 19:53–77

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Cheung TT, Cai XD, et al. (1994) An increased percentage of long amyloid β protein secreted by familial amyloid β protein precursor (βAPP717) mutants. Science 264:1336–1340

    Article  PubMed  CAS  Google Scholar 

  • Tienari PJ, Ida N, Ikonen E, et al. (1997) Intracellular and secreted Alzheimer betaamyloid species are generated by distinct mechanisms in cultured hippocampal neurons. Proc Natl Acad Sci USA 94:4125–4130

    Article  PubMed  CAS  Google Scholar 

  • Tischer E, Cordell B (1996) Beta-amyloid precursor protein. Location of transmembrane domain and specificity of gamma-secretase cleavage. J Biol Chem 271: 21914–21919

    Article  PubMed  CAS  Google Scholar 

  • Van Broeckhoven C, Haan J, Bakker E, et al. (1990) Amyloid β protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science 248:1120–1122

    Article  PubMed  Google Scholar 

  • Wang R, Sweeney D, Gandy SE, Sisodia SS (1996) The profile of soluble amyloid beta protein in cultured cell media. J Biol Chem 271:31894–31902

    Article  PubMed  CAS  Google Scholar 

  • Weidemann A, König G, Bunke D, et al. (1989) Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 57:115–126

    Article  PubMed  CAS  Google Scholar 

  • Wild-Bode C, Yamazaki T, Capell A, et al. (1997) Intracellular generation and accumulation of amyloid beta-peptide terminating at amino acid 42. J Biol Chem 272: 16085–16088

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski T, Ghiso J, Frangione B (1991) Peptides homologous to the amyloid protein of Alzheimer’s disease containing a glutamine for glutamic acid substitution have accelerated amyloid fibril formation. Biochem Biophys Res Commun 179: 1247–1254

    Article  PubMed  CAS  Google Scholar 

  • Wolfe MS, Citron M, Diehl TS, et al. (1998) A substrate-based difluoro ketone selectively inhibits Alzheimer’s γ-secretase activity. J Med Chem 41:6–9

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki T, Haass C, Saido TC, et al. (1997) Specific increase in amyloid beta-protein 42 secretion ratio by calpain inhibition. Biochemistry 36:8377–8383

    Article  PubMed  CAS  Google Scholar 

  • Yankner BA (1996) Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron 16:921–932

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Komano H, Fuller RS, et al. (1994) Proteolytic processing and secretion of human beta-amyloid precursor protein in yeast. Evidence for a yeast secretase activity. J Biol Chem 269:27799–27802

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lichtenthaler, S.F., Masters, C.L., Beyreuther, K. (2000). Proteolytic Processing of the Amyloid Precursor Protein of Alzheimer’s Disease. In: von der Helm, K., Korant, B.D., Cheronis, J.C. (eds) Proteases as Targets for Therapy. Handbook of Experimental Pharmacology, vol 140. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57092-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57092-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63023-1

  • Online ISBN: 978-3-642-57092-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics