Skip to main content

Genetic Regulation of Nicotine-Related Behaviors and Brain Nicotinic Receptors

  • Chapter
Neuronal Nicotinic Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 144))

Abstract

Nicotinic cholinergic receptor (nAChR) subunit mRNAs are found throughout the brain which suggests that nAChRs may have a widespread influence on brain function and explains why the administration of nicotine to humans or laboratory animals results in a multiplicity of behavioral effects. A minimum of seven different nAChR α subunits and three different nAChR β subunits are expressed in the mammalian brain which could lead to extensive diversity in the types of receptors that are actually produced. Enormous progress has been made in the last few years in identifying the receptor types that are expressed in the mammalian brain, but minimal progress has been made in identifying which behaviors (normal, abnormal, and drug-induced) are modulated by specified receptor subtypes. Our goals are to summarize and critically comment on data showing that genetic strategies have been useful in providing answers to questions related to the function and regulation of brain nAChRs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler LE, Hoffer LD, Wiser A, Freedman R (1993) Normalization of auditory physiology by cigarette smoking in schizophrenic patients. Am J Psych 150:1856–1861

    CAS  Google Scholar 

  • Adler LE, Hoffer LJ, Griffith J, Waldo MC, Freedman R (1992) Normalization by nicotine of deficient auditory sensory gating in the relatives of schizophrenics. Biol Psych 32:607–616

    Article  CAS  Google Scholar 

  • Adler LE, Rose G, Freedman R (1986) Neurophysiological studies of sensory gating in rats: Effects of amphetamine, phencyclidine, and haloperidol. Biol Psych 21:787–798

    Article  CAS  Google Scholar 

  • Alkondon M, Pereira EFR, Albuquerque EX (1996) Mapping the location of functional nicotinic and γ-aminobutyric acidA receptors on hippocampal neurons. J Pharmacol Exp Ther 279:1491–1506

    PubMed  CAS  Google Scholar 

  • Anand R, Lindstrom J (1990) Nucleotide sequence of the human nicotinic acetyl-choline receptor α2 subunit gene. Nuc Acids Res 18:4272–4272

    Article  CAS  Google Scholar 

  • Anand R, Lindstrom J (1992) Chromosomal localization of seven neuronal nicotinic acetylcholine receptor subunit genes in humans. Genomics 13:962–967

    Article  PubMed  CAS  Google Scholar 

  • Baker N, Adler LE, Franks RD, Waldo MC, Berry S, Nagamoto H, Muckle A, Freedman R (1987) Neurophysiological assessment of sensory gating in psychiatric inpatients: Comparison between schizophrenia and other diagnoses. Biol Psych 22: 603–617

    Article  CAS  Google Scholar 

  • Bandura A (1969) Principles of behavior modification. Holt, Rinehart&Winston, New York

    Google Scholar 

  • Bewley BR, Brand JM, Harris R (1974) Factors associated with the starting of cigarette smoking by primary school children. Br J Prev Soc Med 28:37–44

    PubMed  CAS  Google Scholar 

  • Boomsma DI, Koopmans JR, Van Doornen LJP, Orlebeke JF (1994) Genetic and social influences on starting to smoke: a study of Dutch adolescent twins and their parents. Addiction 89:219–226

    Article  PubMed  CAS  Google Scholar 

  • Boulter J, O’Shea-Greenfield A, Duvoisin RM, Connolly JG, Wada E, Jensen A, Gardner PD, Ballivet M, Deneris ES, Mckinnon D, Heinemann S, Patrick J (1990) α3, α5, β4: Three members of the rat neuronal nicotinic receptor-related gene family form a cluster. J Biol Chem 265:4472–4482

    PubMed  CAS  Google Scholar 

  • Breese CR, Marks MJ, Logel J, Adams CE, Sullivan B, Collins AC, Leonard S (1997) Effect of smoking history on [3H]nicotine binding in human postmortem brain. J Pharmac Exp Ther 282:7–13

    CAS  Google Scholar 

  • Brioni JD, Decker MW, Sullivan JP, Arneric SP (1997) The pharmacology of (-)-nicotine and novel cholinergic channel modulators. Advances Pharmac 37:153–214

    Article  CAS  Google Scholar 

  • Brown BB (1967) Relationship between evoked response changes and behavior following small doses of nicotine. Ann N Y Acad Sci 142:190–200

    Article  Google Scholar 

  • Carmelli D, Swan GE, Robinette D, Fabsitz RR (1990) Heritability of substance use in the NAS-NRC Twin Registry. Acta Genet Med Gemellol 39:91–98

    PubMed  CAS  Google Scholar 

  • Carmelli D, Swan GE, Robinette D, Fabsitz R (1992) Genetic influence on smoking-a study of male twins. N Engl J Med 327:829–833

    Article  PubMed  CAS  Google Scholar 

  • Chini B, Raimond E, Elgoyhen AB, Moralli D, Balzaretti M, Heinemann S (1994) Molecular cloning and chromosomal localization of the human α7 nicotinic receptor subunit gene (CHRNA7). Genomics 19:379–381

    Article  PubMed  CAS  Google Scholar 

  • Clarke PBS, Schwartz RD, Paul SM, Pert CB, Pert A (1985) Nicotinic binding in rat brain: autoradiographic comparison of [3H]acetylcholine, [3H]nicotine and [125I]α-bungarotoxin. J Neurosci 5:1307–1315

    PubMed  CAS  Google Scholar 

  • Collins AC, Evans CB, Miner LL, Marks MJ (1986) Mecamylamine blockade of nicotine responses: evidence for two brain nicotinic receptors. Pharmacol, Biochem, Behav 24:1767–1773

    Article  CAS  Google Scholar 

  • Couturier S, Erkman L, Valera S, Rungger D, Bertrand S, Boulder J, Ballivet M, Bertrand D (1990) α5, α3, and non-α3: Three clustered avian genes encoding neuronal nicotinic acetylcholine receptor-related subunits. J Biol chem 265:17560–17567

    PubMed  CAS  Google Scholar 

  • Dobelis P, Calcaterra J, Tritto T, Marks MJ, Collins AC (1998) Comparison of regional brain 3H-nicotine binding and nicotine-stimulated 86Rb+ efflux in 11 strains of mice. Soc. Neurosci Abstracts 24:336

    Google Scholar 

  • Dunlop CW, Stumpf C, Maxwell DS, Schindler W (1960) Modification of cortical, reticular, and hippocampal unit activity by nicotine in the rabbit. Am J Physio 198:515–518

    CAS  Google Scholar 

  • Elmsie FV, Rees M, Williamson MP, Kerr M, Kjeldsen MJ, Pang KA, Sundqvist A, Friis ML, Chadwick D, Richens A, Covanis A, Santos M, Arzimanoglou A, Panayiotopoulos CP, Curtis D, Whitehouse WP, Gardiner RM (1997) Genetic mapping of a major susceptibility locus for juvenile myoclonic epilepsy on chromosome 15q. Hum Mol Genet 6:1329–1334

    Article  Google Scholar 

  • Fisher RA (1958a) Cancer and smoking. Nature 182:596

    Article  PubMed  CAS  Google Scholar 

  • Fisher RA (1958b) Lung cancer and cigarettes. Nature 182:108

    Article  PubMed  CAS  Google Scholar 

  • Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of α4 and β2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 41:31–37

    PubMed  CAS  Google Scholar 

  • Floris V, Morocutti C, Ayala GF, Morocutti (1964) Effects of nicotine on cortical, thalamic, and hippocampal electrical activity in rabbits. J Neuropsychiatry 5:247–251

    Google Scholar 

  • Forgie ML, Beyerstein BL, Alexander BK (1988) Contributions of taste factors and gender to opioid preference in C57BL and DBA mice. Psychopharmacology 95: 237–244

    Article  PubMed  CAS  Google Scholar 

  • Frankel WN, Taylor BA, Noebels JL, Lutz CM (1994) Genetic epilepsy model derived from common inbred mouse strains. Genetics 138:481–489

    PubMed  CAS  Google Scholar 

  • Freedman R, Adler LE, Baker N, Waldo M, Mizner G (1987) Candidate for inherited neurobiological dysfunction in schizophrenia. Som Cell Mol Gen 13:479–484

    Article  CAS  Google Scholar 

  • Freedman R, Coon H, Myles-Worsley M, Orr-Urtreger A, Olincy A, Davis A, Poly-meropoulos M, Holik J, Hopkins J, Hoff M, Rosenthal J, Waldo MC, Reimherr R, Wender P, Yaw J, Young DA, Breese CR, Adams C, Patterson D, Adler LE, Kruglyak L, Leonard S, Byerley W (1996) Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc Natl Acad Sci 94:587–592

    Article  Google Scholar 

  • Freedman R, Hall M, Adler LE, Leonard S (1995) Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol Psych 38:22–33

    Article  CAS  Google Scholar 

  • Freedman R, Waldo M, Bickford-Wimer P, Nagamoto H (1991) Elementary neuronal dysfunctions in schizophrenia. Schiz Res 4:233–243

    Article  CAS  Google Scholar 

  • Friedman LS, Lichtenstein E, Biglan A (1985) Smoking onset among teens: An empirical analysis of initial situations. Addict Behav 10:1–13

    Article  PubMed  CAS  Google Scholar 

  • Gault J, Robinson M, Berger R, Drebing C, Logel J, Hopkins J, Moore T, Jacobs S, Meriwether J, Choi MJ, Kim EJ, Walton K, Buiting K, Davis A, Breese C, Freedman R, Leonard S (1998) Genomic organization and partial duplication of the human α7 neuronal nicotinic acetylcholine receptor gene (CHRNA7). Genomics 52:173–185.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert DG, Gilbert BO (1995) Personality, psychopathology, and nicotine response as mediators of the genetics of smoking. Behav Genet 2:133–147

    Article  Google Scholar 

  • Gill M, Vallada H, Collier D, Sham P, Holmans P, Murray R, McGuffin P, Nanko S, Owen M, Antonarakis S, Housman D, Kazazian H, Nestadt G, Pulver AE, Sträub RE, MacLean CJ, Walsh D, Kendler KS, DeLisi L, Polymeropoulos M, Coon H, Byerley W, Lofthouse R, Gershon E, Read CM (1996) A combined analysis of D22S278 marker alleles in affected sib-pairs: support for a susceptibility locus for schizophrenia at chromosome 22ql2. Schizophrenia Collaborative Linkage Group (Chromosome 22). Am J Med Gen 67:40–45

    Article  CAS  Google Scholar 

  • Glassman AH (1993) Cigarette smoking: implications for psychiatric illness. Am J Psych 150:546–553

    CAS  Google Scholar 

  • Goff DC, Henderson DC, Amico E (1992) Cigarette smoking in schizophrenia: relationship to psychopathology and medication side effects. Am J Psych 149: 1189–1194

    CAS  Google Scholar 

  • Gurling HMD, Grant S, Dangl J (1985) The genetic and cultural transmission of alcohol use, alcoholism, cigarette smoking and coffee drinking: a review and an example using a log linear cultural transmission model. Br J Addict 80:269–279

    Article  PubMed  CAS  Google Scholar 

  • Hajek P (1991) Individual differences in difficulty quitting smoking. Br J Addict 86:555–558.

    Article  PubMed  CAS  Google Scholar 

  • Heath AC (1990) Persist or quit?. Testing for a genetic contribution to smoking persistence. Acta Genet Med Gemellol 39:447–458

    PubMed  CAS  Google Scholar 

  • Heath AC, Martin NG (1993) Genetic models for the natural history of smoking: Evidence for a genetic influence on smoking persistence. Addict Behav 18:19–34

    Article  PubMed  CAS  Google Scholar 

  • Heath AC, Cates R, Martin NG, Meyer J, Hewitt JK, Neale MC, Eaves LJ (1993) Genetic contribution to risk of smoking initiation: comparisons across birth cohorts and across cultures. J Subst Abuse 5:221–246

    Article  PubMed  CAS  Google Scholar 

  • Heath AC, Madden PAF (1995) Genetic influences on smoking behavior. In: Turner JR, Cardon LR, Hewitt JK (eds) Behavior genetic approaches in behavioral medicine. Plenum Press, New York, p 45

    Google Scholar 

  • Heath AC, Madden PAF, Slutske WS, Martin NG (1995) Personality and the inheritance of smoking behavior: a genetic perspective. Behav Genet 25:103–117

    Article  PubMed  CAS  Google Scholar 

  • Holzman PS, Kringlen E, Matthysse S, Flanagan SD, Lipton, RB, Cramer G, Levin S, Lange K, Levy DL (1988) A single dominant gene can account for eye tracking dysfunctions and schizophrenia in offspring of discordant twins. Arch Gen Psych 45:641–647

    Article  CAS  Google Scholar 

  • Holzman PS, Proctor LR, Hughes DW (1973) Eye-tracking patterns in schizophrenia. Science 181:179–181

    Article  PubMed  CAS  Google Scholar 

  • Hughes JR, Hatsukami DK, Mitchell JE, Dahlgren IA (1986) Prevalence of smoking among psychiatric outpatients. Am J Psych 143:993–997

    CAS  Google Scholar 

  • Kandel D, Chen K, Warner LA, Kessler RC, Grant B (1997) Prevalence and demographic correlates of symptoms of last year dependence on alcohol, nicotine, marijuana and cocaine in the U.S. population. Drug Alcohol Depend 44:11–29

    Article  PubMed  CAS  Google Scholar 

  • Kaprio J, Hammar N, Koskenvuo M, Floderus-Myrhed B, Langinvainio H, Sarna S (1982) Cigarette smoking and alcohol use in Finland and Sweden: a cross-national twin study. Int J Epid 11:378–386

    Article  CAS  Google Scholar 

  • Kendler KS, MacLean CJ, O’Neill FA, Burke J, Murphy B, Duke F, Shinkwin, Easter SM, Webb BT, Zhang J, Walsh D, Straub RE (1996) Evidence for a schizophrenia vulnerability locus on chromosome 8p in the Irish Study of High-Density Schizophrenia Families. Am J Psych 153:1534–1540

    CAS  Google Scholar 

  • Kingsmore SF, Giros B, Suh D, Bieniarz M, Caron MG, Seidin MF (1994) Glycine receptor β-subunit gene mutation in spastic mouse associated with LINE-1 element insertion. Nature Genet 7:136–142

    Article  PubMed  CAS  Google Scholar 

  • Kozlowski LT, Herman CP (1984) The interaction of psychosocial and biological determinants of tobacco use: more on the boundary model. J Appl Soc Psych 14:244–256

    Article  Google Scholar 

  • Kuryatov A, Gerzanich V, Nelson, M, Olale F, Lindstrom J (1997) Mutation causing autosomal dominant nocturnal frontal lobe epilepsy alters Ca2+ permeability, conductance, and gating of human α4β2 nicotinic acetylcholine receptors. J Neurosci 17:9035–9047

    PubMed  CAS  Google Scholar 

  • Léna C, Changeux J-P (1997) Role of Ca2+ ions in nicotinic facilitation of GABA release in mouse thalamus. J Neurosci 17:576–585

    PubMed  Google Scholar 

  • Leonard S, Moore T, Gault J, Hopkins J, Robinson M, Olincy A, Adler LE, Cloninger CR, Kaufmann CA, Tsuang MT, Faraone SV, Malaspina D, Svrakic DM, and Freed-man R (1997) Further investigation of a chromosome 15 locus in schizophrenia: analysis of affected sibpairs from the NIMH genetics initiative. Am J Med Gen (Neuropsych Gen), In submission

    Google Scholar 

  • Lu Y, Grady S, Marks MJ, Picciotto M, Changeux J-P, Collins AC (1998) Pharmacological characterization of nicotinic receptor-stimulated GABA release from mouse brain synaptosomes. J Pharmacol Exp Ther 287:648–657

    PubMed  CAS  Google Scholar 

  • Luntz-Leybman V, Bickford PC, Freedman R (1992) Cholinergic gating of response to auditory stimuli in rat hippocampus. Brain Res 587:130–136

    Article  PubMed  CAS  Google Scholar 

  • Madden PAF, Heath AC, Martin NG (1997) Smoking and intoxication after alcohol challenge in women and men: genetic influences. Alcohol Clin Exp Res 21: 1732–1741

    PubMed  CAS  Google Scholar 

  • Marks MJ, Collins AC (1982) Characterization of nicotine binding in mouse brain and comparison with the binding of α-bungarotoxin and quinuclidinyl benzilate. Mol Pharmacol 22:554–564

    PubMed  CAS  Google Scholar 

  • Marks MJ, Miner L, Burch JB, Fulker DW, Collins AC (1984) A diallel analysis of nicotine-induced hypothermia. Pharmacol, Biochem, Behav 21:953–959

    Article  CAS  Google Scholar 

  • Marks MJ, Stitzel JA, Collins AC (1985) Time course study of the effects of chronic nicotine infusion on drug response and brain receptors. J Pharmacol Exp Ther 235:619–628

    PubMed  CAS  Google Scholar 

  • Marks MJ, Miner LL, Cole-Harding S, Burch JB, Collins AC (1986a) A genetic analysis of nicotine effects on open field activity. Pharmacol Biochem Behav 24:743–749

    Article  PubMed  CAS  Google Scholar 

  • Marks MJ, Stitzel JA, Romm E, Wehner JM, Collins AC (1986b) Nicotinic binding sites in rat and mouse brain: comparison of acetylcholine, nicotine and α-bungarotoxin. Mol Pharmacol 30:427–236

    PubMed  CAS  Google Scholar 

  • Marks MJ, Stitzel JA, Collins AC (1986c) A dose-response analysis of nicotine tolerance and receptor changes in two inbred mouse strains. J Pharmacol Exp Ther 239:358–364

    PubMed  CAS  Google Scholar 

  • Marks MJ, Stitzel JA, Collins AC (1989a) Genetic influences on nicotine responses. Pharmacol Biochem Behav 33:667–678

    Article  PubMed  CAS  Google Scholar 

  • Marks MJ, Romm E, Campbell SM, Collins AC (1989b) Variation of nicotinic binding sites among inbred strains. Pharmacol Biochem Behav 33:679–689

    Article  PubMed  CAS  Google Scholar 

  • Marks MJ, Campbell SM, Romm E, Collins AC (1991) Genotype influences the development of tolerance to nicotine in the mouse. J Pharmacol Exp Ther 259:392–402

    PubMed  CAS  Google Scholar 

  • Marks MJ, Pauly JR, Gross SD, Deneris ES, Hermans-Borgmeyer I, Heinemann SF, Collins AC (1992) Nicotine binding and nicotinic receptor subunit RNA after chronic nicotine treatment. J Neurosci 12:2765–2784

    PubMed  CAS  Google Scholar 

  • Masterson E, O’Shea B (1984) Smoking and malignancy in schizophrenia. Br J Psych 145:429–432

    Article  CAS  Google Scholar 

  • McClearn GE, Rodgers DA (1959) Differences in alcohol preference among inbred strains of mice. Q J Stud Alcohol 20:691–695

    Google Scholar 

  • Meliska CJ, Bartke A, Vandergriff JL, Jensen RA (1995) Ethanol and nicotine consumption and preference in transgenic mice overexpressing the bovine growth hormone gene. Pharmacol Biochem Behav 50:563–570

    Article  PubMed  CAS  Google Scholar 

  • Miner LL, Marks MJ, Collins AC (1984) Classical genetic analysis of nicotine-induced seizures and nicotinic receptors. J Pharmacol Exp Ther 231:545–554

    PubMed  CAS  Google Scholar 

  • Miner LL, Marks MJ, Collins AC (1985) Relationship between nicotine-induced seizures and hippocampal nicotinic receptors. Life Sci 37:75–83

    Article  PubMed  CAS  Google Scholar 

  • Miner LL, Marks MJ, Collins AC (1986) Genetic analysis of nicotine-induced seizures and hippocampal nicotinic receptors in the mouse. J Pharmacol Exp Ther 239: 853–860

    PubMed  CAS  Google Scholar 

  • Miner LL, Collins AC (1989) Strain comparison of nicotine-induced seizure sensitivity and nicotinic receptors. Pharmacol Biochem Behav 33:469–475

    Article  PubMed  CAS  Google Scholar 

  • Mülhardt C, Fischer M, Gass P, Simon-Chazottes D, Guénet J-L, Kuhse J, Betz H, Becker C-M (1994) The spastic mouse: Aberrant splicing of glycine receptor β subunit mRNA caused by intronic insertion of LI element. Neuron 13:1003–1015

    Article  PubMed  Google Scholar 

  • Murphree HB (1979) EEG effects in humans of nicotine. Tobacco smoking, withdrawal from smoking and possible surrogates. In: Redmond A, Izard C (eds) Electro-physiological Effects of Nicotine Elsevier/North-Holland Biomedical Press. Amsterdam pp. 227–243

    Google Scholar 

  • Nakayama H, Nakashima T, Kurogochi Y (1991) α4 is a major acetylcholine binding subunit of cholinergic ligand affinity-purified nicotinic acetylcholine receptor from rat brains. Neurosci Lett 121:122–124

    Article  PubMed  CAS  Google Scholar 

  • Olincy A, Ross RG, Roath M, Freedman R (1998) Smooth pursuit eye movements and cigarette smoking in schizophrenia. Neuropsychopharmacology 18:175–185

    Article  PubMed  CAS  Google Scholar 

  • Olincy A, Young DA, and Freedman R (1997) Increased levels of the nicotine metabolite cotinine in schizophrenic smokers compared to other smokers. Biol Psych 42:1–5

    Article  CAS  Google Scholar 

  • Orr-Urtreger A, Seldin MF, Baldini A, Beaudet AL (1995) Cloning and mapping of the mouse α7-neuronal nicotinic acetylcholine receptor. Genomics 26:399–402

    Article  PubMed  CAS  Google Scholar 

  • Petersen DR, Norris KJ, Thompson JA (1984) A comparative study of the disposition of nicotine and its metabolites in three inbred strains of mice. Drug Metabolism and Disposition 12:725–731

    PubMed  CAS  Google Scholar 

  • Phillips HA, Scheffer IE, Berkovic SF, Hollway GE, Sutherland GR, Mulley JC (1995) Localization of a gene for autosomal dominant nocturnal frontal lobe epilepsy to chromosome 20ql3.2. Nat Genetics 10:117–118

    Article  CAS  Google Scholar 

  • Pianezza ML, Sellers EM, Tyndale RF (1998) Nicotine metabolism defect reduces smoking. Nature 393:750

    Article  PubMed  CAS  Google Scholar 

  • Pohjanvirta R, Wong JMY, Li W, Harper PA, Tuomisto J, Okey AB (1998) Point mutation in intron sequence causes altered carboxyl-terminal structure in the aryl hydrocarbon receptor of the most 2,3,7,8-tetrachlorodibenzo-p-dioxin-resistant rat strain. Mol Pharmacol 54:86–93

    PubMed  CAS  Google Scholar 

  • Pomerleau OF (1995) Individual differences in sensitivity to nicotine: implications for genetic research on nicotine dependence. Behav Genet 25:161–177

    Article  PubMed  CAS  Google Scholar 

  • Pomerleau OF, Flessland KA, Pomerleau CS, Hariharan M (1992) Controlled dosing of nicotine via an intra-nasal nicotine aerosol delivery device (INADD). Psychopharmacology 108:519–526

    Article  PubMed  CAS  Google Scholar 

  • Pulver AE, Lasseter VK, Kasch L, Wolyniec P, Nestadt G, Blouin JL, Kimberland M, Babb R, Vourlis S, Chen H (1995) Schizophrenia: a genome scan targets chromosomes 3p and 8p as potential sites of susceptibility genes. Am J Med Gen 60:252–260

    Article  CAS  Google Scholar 

  • Raimondi E, Rubboli F, Moralli D, Chini B, Fornasari D, Tarroni P, De Carli L, Clementi F (1992) Chromosomal localization and physical linkage of the genes encoding the human alpha 3, alpha 5, and beta 4 neuronal nicotinic receptor subunits. Genomics 12:849–850

    Article  PubMed  CAS  Google Scholar 

  • Robinson SF, Marks MJ, Collins AC (1996) Inbred mouse strains vary in oral self-selection of nicotine. Psychopharmacology 124:332–339

    Article  PubMed  CAS  Google Scholar 

  • Rollins YD, Stevens KE, Harris KR, Hall ME, Rose GM, Leonard S (1993) Reduction in auditory gating following intracerebroventricular application of α-bungarotoxin binding site ligands and α7 antisense oligonucleotides. Soc Neurosci Abst 19:837–837

    Google Scholar 

  • Rollins YD, Breese CR, Adams C, Drebing C, Rose GM, Leonard S (1996) Cellular localization of α-bungarotoxin binding and β7 mRNA in the hippocampus related to auditory gating in the awake-behaving rat. Soc Neurosci Abst 22:1272

    Google Scholar 

  • Romano C, Goldstein A (1980) Stereospecific nicotine receptors on rat brain membranes. Science 210:647–650

    Article  PubMed  CAS  Google Scholar 

  • Schechter MD, Meehan SM, Schechter (1995) Genetic selection for nicotine activity in mice correlates with conditioned place preference. Eur J Pharmacol 279:59–64

    Google Scholar 

  • Schoepfer R, Conroy WG, Whiting P, Gore M, Lindstrom J (1990) Brain α-bungarotoxin binding protein cDNAs and MAbs reveal subtypes of this branch of the ligand-gated ion channel gene super-family. Neuron 5:35–48

    Article  PubMed  CAS  Google Scholar 

  • Schwartz RD, McGee JR, Kellar KJ (1982) Nicotinic cholinergic receptors labeled by [3H]acetylcholine in rat brain. Mol Pharmacol 22:56–62

    PubMed  CAS  Google Scholar 

  • Séguéla P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties and distribution of rat brain α7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13:596–604

    PubMed  Google Scholar 

  • Sepich DS, Wegner J, O’Shea S, Westerfield M (1998) An altered intron inhibits synthesis of the acetylcholine receptor α-subunit in the paralyzed zebrafish mutant nicl. Genetics 148:361–372

    PubMed  CAS  Google Scholar 

  • Silverstein B, Kelly E, Swan J, Kozlowski ET (1982) Physiological predisposition toward becoming a cigarette smoker: evidence from a sex difference. Addict Behav 7:83–86

    Article  PubMed  CAS  Google Scholar 

  • Steinlein O, Smigrodzki R, Lindstrom J, Anand R, Kohler M, Tocharoentanaphol C, Vogel F (1994) Refinement of the localization of the gene for neuronal acetylcholine receptor α4 subunit (CHRNA4) to human chromosome 20ql3.3. Genomics 22:493–495

    Article  PubMed  CAS  Google Scholar 

  • Steinlein O, Mulley J, Propping P, Wallace R, PhillipsH, Sutherland G, Scheffer I, Berkovic S (1995) A missense mutation in the neuronal nicotinic acetylcholine receptor subunit associated with autosomal dominant nocturnal frontal lobe epilepsy. Nature Genet 11:201–203

    Article  PubMed  CAS  Google Scholar 

  • Steinlein OK, Magnusson A, Stoodt J, Bertrand S, Weiland S, Berkovic SF, Nakken KO, Propping P, Bertrand D (1997) An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. Hum Mol Genet 6:943–947

    Article  PubMed  CAS  Google Scholar 

  • Stevens KE, Freedman R, Collins AC, Hall M, Leonard S, Marks MJ, Rose GM (1996) Genetic correlation of inhibitory gating of hippocampal auditory evoked response and alpha-bungarotoxin-binding nicotinic cholinergic receptors in inbred mouse strains. Brain Res 15:152–162

    CAS  Google Scholar 

  • Stevens KE, Kern WR, Mahnir VM, Freedman R (1997) Selective α7-nicotinic agonists normalize inhibition of auditory response in DBA mice. Psychopharmacology 136:320–327

    Article  Google Scholar 

  • Stitzel JA, Farnham DA, Collins AC (1996) Linkage of strain-specific nicotinic receptor α7 subunit restriction fragment length polymorphisms with levels of α-bungarotoxin binding in brain. Mol Brain Res 43:30–40

    Article  PubMed  CAS  Google Scholar 

  • Stitzel JA, Brooks NP, Collins AC (1997) Influence of nAChR α7 subunit genotype on levels of α7 RNA and α-bungarotoxin binding in brain: An autoradiographic analysis. Soc Neurosci Abstr 23(1):381 (154.7)

    Google Scholar 

  • Stitzel JA, Blanchette JM, Collins AC (1998) Sensitivity to the seizure-inducing effects of nicotine is associated with strain-specific variants of the α5 and α7 nicotinic receptor subunit genes. J Pharmacol Exp Ther 284:1104–1111

    PubMed  CAS  Google Scholar 

  • Straub RE, MacLean CJ, O’Neill FA, Burke J, Murphy B, Duke F, Shinkwin R, Webb BT, Zhang J, Walsh D (1995) A potential vulnerability locus for schizophrenia on chromosome 6p24-22: evidence for genetic heterogeneity. Nature Gen 11:287–293

    Article  CAS  Google Scholar 

  • Stumpf C, Gogolak G (1967) Actions of nicotine upon the limbic system. Ann N Y Acad Sci 142:143–158

    Article  CAS  Google Scholar 

  • Wada K, Ballivet M, Boulter J, Connolly J, Wada E, Deneris ES, Swanson LW, Heinemann S, Patrick J (1988) Functional expression of a new pharmacological subtype of brain nicotinic acetylcholine receptor. Science 240:330–334

    Article  PubMed  CAS  Google Scholar 

  • Waldo MC, Carey G, Myles-Worsley M, Cawthra E, Adler LE, Nagamoto HT, Wender P, Byerley W, Plaetke R, Freedman R (1991) Codistribution of a sensory gating deficit and schizophrenia in multi-affected families. Psych Res 39:257–268

    Article  CAS  Google Scholar 

  • Weiland S, Witzemann V, Villarroel A, Propping P, Steinlein (1996) An amino acid exchange in the second transmembrane segment of a neuronal nicotinic receptor causes partial epilepsy by altering its desensitization kinetics. FEBS Lett 398:91–96

    Google Scholar 

  • West RJ, Rusell M AH (1988) Loss of acute nicotine tolerance and severity of cigarette withdrawal. Psychopharmacology 94:563–565

    Article  PubMed  CAS  Google Scholar 

  • Wood S, Schertzer M, Yaremko ML (1995) Identification of the human neuronal nicotinic cholinergic alpha 2 receptor locus, (CHRNA2), within an 8p21 mapped locus, by sequence homology with rat DNA. Som Cell Mol Gen 21:147–150

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stitzel, J.A., Leonard, S.S., Collins, A.C. (2000). Genetic Regulation of Nicotine-Related Behaviors and Brain Nicotinic Receptors. In: Clementi, F., Fornasari, D., Gotti, C. (eds) Neuronal Nicotinic Receptors. Handbook of Experimental Pharmacology, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57079-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57079-7_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63027-9

  • Online ISBN: 978-3-642-57079-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics