Skip to main content

A New Animal Model for Epstein-Barr Virus Pathogenesis

  • Chapter
Epstein-Barr Virus and Human Cancer

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 258))

Abstract

Animal models have not been widely used for studying Epstein-Barr virus (EBV) pathogenesis. In large part this has been due to the lack of good animal model systems which reproduce the many different aspects of EBV infection in humans. Many aspects of EBV pathogenesis would benefit from an authentic animal model system, including studies about infectious mononucleosis, immune responses that control acute and persistent infection, mechanisms for immune evasion and persistent infection, natural reservoirs for infection in hematologic and epithelial cell compartments, transition to hematologic and epithelial cell malignancies, and vaccine development

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ablashi DV, Gerber P, Easton J (1979) Oncogenic herpesviruses of nonhuman primates. Comp Immunol Microbiol Infect Dis 2:229–241

    Article  PubMed  CAS  Google Scholar 

  • Agrba VZ, Yakovleva LA, Lapin BA, Sangulija IA, Timanovskaya VV, Markarjan DS, Chuvirov GN,Salmanova EA (1975) The establishment of continuous lymphoblastoid suspension cell cultures from hematopoietic organs of baboon (Papio hamadryas) with malignant lymphoma. Exp Pathol (Jena) 10:318–332

    CAS  Google Scholar 

  • Anagnostopoulos I, Hummel M, Kreschel C, Stein H (1995) Morphology immunophenotype and distribution of latently and/or productively Epstein-Barr virus-infected cells in acute infectious mono-nucleosis: implications for the interindividual infection route of Epstein-Barr virus. Blood 85:744–750

    PubMed  CAS  Google Scholar 

  • Apolloni A, Sculley TB (1994) Detection of A-type and B-type Epstein-Barr virus in throat washings and lymphocytes. Virology 202:978–981

    Article  PubMed  CAS  Google Scholar 

  • Arikawa J, Tokunaga M, Satoh E, Tanaka S, Land CE (1997) Morphological characteristics of Epstein-Barr virus-related early gastric carcinoma: a case-control study. Pathol Int 47:360–367

    Article  PubMed  CAS  Google Scholar 

  • Baskin GB, Roberts ED, Kuebler D, Martin LN, Blauw B, Heeney J, Zurcher C (1995) Squamous epithelial proliferative lesions associated with rhesus Epstein-Barr virus in simian immunodeficiency virus-infected rhesus monkeys. J Infect Dis 172:535–539

    Article  PubMed  CAS  Google Scholar 

  • Blake NW, Moghaddam A, Rao P, Kaur A, Glickman R, Cho YG, Marchini A, Haigh T, Johnson RP, Rickinson AB, Wang F (1999) Inhibition of antigen presentation by the glycine/alanine repeat domain is not conserved in simian homologs of Epstein-Barr virus nuclear antigen 1. J Virol 73:7381–7389

    PubMed  CAS  Google Scholar 

  • Bocker JF, Tiedemann KH, Bornkamm GW, Zur HH (1980) Characterization of an EBV-like virus from African green monkey lymphoblasts. Virology 101:291–295

    Article  PubMed  CAS  Google Scholar 

  • Brooks JM, Croom-Carter DS, Leese AM, Tierney RJ, Habeshaw G, Rickinson AB (2000) Cytotoxic T-lymphocyte responses to a polymorphic Epstein-Barr virus epitope identify healthy carriers with coresident viral strains. J Virol 74:1801–1809

    Article  PubMed  CAS  Google Scholar 

  • Caldwell RG, Wilson JB, Anderson SJ, Longnecker R (1998) Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9:405–411

    Article  PubMed  CAS  Google Scholar 

  • Callan MF, Tan L, Annels N, Ogg GS, Wilson JD, O’Callaghan CA, Steven N, McMichael AJ, Rickinson AB (1998) Direct visualization of antigen-specific CD8 + T cells during the primary immune response to Epstein-Barr virus in vivo. J Exp Med 187:1395–1402

    Article  PubMed  CAS  Google Scholar 

  • Cho YG, Gordadze AV, Ling PD, Wang F (1999) Evolution of two types of rhesus lymphocryptovirus similar to type 1 and type 2 Epstein-Barr virus. J Virol 73:9206–9212

    PubMed  CAS  Google Scholar 

  • Cohen JI, Lekstrom K (1999) Epstein-Barr virus BARF1 protein is dispensable for B-cell transformation and inhibits alpha interferon secretion from mononuclear cells. J Virol 73:7627–7632

    PubMed  CAS  Google Scholar 

  • Desrosiers RC (1997) The value of specific pathogen-free rhesus monkey breeding colonies for AIDS research. AIDS Res Hum Retroviruses 13:5–6

    Article  PubMed  CAS  Google Scholar 

  • Dillner J, Rabin H, Letvin N, Henle W, Henle G, Klein G (1987) Nuclear DNA-binding proteins determined by the Epstein-Barr virus-related simian lymphotropic herpesviruses H. gorilla, H. pan, H. pongo and H. papio. J Gen Virol 68:1587–1596

    Article  PubMed  CAS  Google Scholar 

  • Dunkel VC, Pry TW, Henle G, Henle W (1972) Immunofluorescence tests for antibodies to Epstein-Barr virus with sera of lower primates. J Natl Cancer Inst 49:435–440

    PubMed  CAS  Google Scholar 

  • Epstein MA, Morgan AJ, Finerty S, Randle BJ, Kirkwood JK (1985) Protection of cottontop tamarins against Epstein-Barr virus-induced malignant lymphoma by a prototype subunit vaccine. Nature 318:287–289

    Article  PubMed  CAS  Google Scholar 

  • Falk L, Deinhardt F, Nonoyama M, Wolfe LG, Bergholz C (1976) Properties of a baboon lymphotropic herpesvirus related to Epstein-Barr virus. Int J Cancer 18:798–807

    Article  PubMed  CAS  Google Scholar 

  • Falk L, Wolfe L, Deinhardt F, Paciga J, Dombos L, Klein G, Henle W, Henle G (1974) Epstein-Barr virus: transformation of non-human primate lymphocytes in vitro. Int J Cancer 13:363–376

    Article  PubMed  CAS  Google Scholar 

  • Feichtinger H, Putkonen P, Parravicini C, Li ST, Kaya EE, Bottiger D, Biberfeld P (1990) Malignant lymphomas in cynomolgus monkeys infected with simian immunodeficiency virus. Am J Pathol 137:1311–1315

    PubMed  CAS  Google Scholar 

  • Frank A, Andiman WA, Miller G (1976) Epstein-Barr virus and nonhuman primates: natural and experimental infection. Adv Cancer Res 23:171–201

    Article  PubMed  CAS  Google Scholar 

  • Franken M, Annis B, Ali AN, Wang F (1995) 5’ Coding and regulatory region sequence divergence with conserved function of the Epstein-Barr virus LMP2A homolog in herpesvirus papio. J Virol 69:8011–8019

    PubMed  CAS  Google Scholar 

  • Franken M, Devergne O, Rosenzweig M, Annis B, Kieff E, Wang F (1996) Comparative analysis identifies conserved tumor necrosis factor receptor-associated factor 3 binding sites in the human and simian Epstein-Barr virus oncogene LMP1. J Virol 70:7819–7826

    PubMed  CAS  Google Scholar 

  • Gerber P, Kalter SS, Schidlovsky G, Peterson WJ, Daniel MD (1977) Biologic and antigenic characteristics of Epstein-Barr virus-related herpesviruses of chimpanzees and baboons. Int J Cancer 20:448–459

    Article  PubMed  CAS  Google Scholar 

  • Gerber P, Pritchett RF, Kieff ED (1976) Antigens and DNA of a chimpanzee agent related to Epstein-Barr virus. J Virol 19:1090–1099

    PubMed  CAS  Google Scholar 

  • Goldberg RJ, Scolnick EM, Parks WP, Yakovleva LA, Lapin BA (1974) Isolation of a primate type-C virus from a lymphomatous baboon. Int J Cancer 14:722–730

    Article  PubMed  CAS  Google Scholar 

  • Gu SY, Huang TM, Ruan L, Miao YH, Lu H, Chu CM, Motz M, Wolf H (1995) First EBV vaccine trial in humans using recombinant vaccinia virus expressing the major membrane antigen. Dev Biol Stand 84:171–177

    PubMed  CAS  Google Scholar 

  • Gulley ML, Pulitzer DR, Eagan PA, Schneider BG (1996) Epstein-Barr virus infection is an early event in gastric carcinogenesis and is independent of bcl-2 expression and p53 accumulation. Hum Pathol 27:20–27

    Article  PubMed  CAS  Google Scholar 

  • Heberling RL, Bieber CP, Kalter SS (1981) Establishment of a lymphoblastoid cell line from a lymphomous cynomolgus monkey. In: Yohn DS, Blakeslee JR (eds) Advances in comparative leukemia research. Elsevier, Amsterdam, pp 385–386

    Google Scholar 

  • Heller M, Gerber P, Kieff E (1982) DNA of herpesvirus pan a third member of the Epstein-Barr virus-Herpesvirus papio group. J Virol 41:931–939

    PubMed  CAS  Google Scholar 

  • Heller M, Gerber P, Kieff E (1981) Herpesvirus papio DNA is similar in organization to Epstein-Barr virus DNA. J Virol 37:698–709

    PubMed  CAS  Google Scholar 

  • Heller M, Kieff E (1981) Colinearity between the DNAs of Epstein-Barr virus and herpesvirus papio. J Virol 37:821–826

    PubMed  CAS  Google Scholar 

  • Ho M, Jaffe R, Miller G, Breinig MK, Dummer JS, Makowka L, Atchison RW, Karrer F, Nalesnik MA, Starzl TE (1988) The frequency of Epstein-Barr virus infection and associated lymphoproliferative syndrome after transplantation and its manifestations in children. Transplantation 45:719–727

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Cho YG, Wang F (2000) Structural, functional, and genetic comparisons of Epstein-Barr virus nuclear antigen 3A, 3B, and 3C homologues encoded by the rhesus lymphocryptovirus. J Virol 74(13):5921–5932

    Article  PubMed  CAS  Google Scholar 

  • Kalter SS, Heberling RL, Ratner JJ (1972) EBV antibody in sera of non-human primates. Nature 238:353–354

    Article  PubMed  CAS  Google Scholar 

  • Kalter SS, Herberling RL, Ratner JJ (1973) EBV antibody in monkeys and apes. Bibl Haematol 39: 871–875

    PubMed  CAS  Google Scholar 

  • Kaur A, Rao P, Cho Y, Hale C, Johnson RP, Wang F (1999) Host responses to lymphocryptovirus infection in rhesus macaques - an animal model for EBV infection. In: 24th International Herpesvirus Workshop

    Google Scholar 

  • Khanna R, Burrows SR, Kurilla MG, Jacob CA, Misko IS, Sculley TB, Kieff E, Moss DJ (1992) Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development. J Exp Med 176:169–176

    Article  PubMed  CAS  Google Scholar 

  • Landon JC, Ellis LB, Zeve VH, Fabrizio DP (1968) Herpes-type virus in cultured leukocytes from chimpanzees. J Natl Cancer Inst 40:181–192

    PubMed  CAS  Google Scholar 

  • Landon JC, Malan LB (1971) Seroepidemiologic studies of Epstein-Barr virus antibody in monkeys. J Natl Cancer Inst 46:881–884

    PubMed  CAS  Google Scholar 

  • Lapin BA (1974) The epidemiologic and genetic aspect of an outbreak of leukemia among baboons of the Sukhumi monkey colony in Dutcher and Chieco-Bianchi. Unifying concepts of leukemia. Biblphyl Haematol 39:263–268

    Google Scholar 

  • Lapin BA, Timanovskaya VV, Yakovleva LA (1985) Herpesvirus HVMA: a new representative in the group of the EBV-like B- lymphotropic herpesviruses of primates. Hamatol Bluttransfus 29:312–313

    CAS  Google Scholar 

  • Le Roux A, Kerdiles B, Walls D, Dedieu JF, Perricaudet M (1994) The Epstein-Barr virus determined nuclear antigens EBNA-3A -3B and -3C repress EBNA-2-mediated transactivation of the viral terminal protein 1 gene promoter. Virology 205:596–602

    Article  PubMed  Google Scholar 

  • Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, Klein G, Kurilla MG, Masucci MG (1995) Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375:685–688

    Article  PubMed  CAS  Google Scholar 

  • Li SL, Feichtinger H, Kaaya E, Migliorini P, Putkonen P, Biberfeld G, Middeldorp JM, Biberfeld P, Ernberg I (1993) Expression of Epstein-Barr-virus-related nuclear antigens and B-cell markers in lymphomas of SIV-immunosuppressed monkeys. Int J Cancer 55:609–615

    Article  PubMed  CAS  Google Scholar 

  • Ling PD, Hayward SD (1995) Contribution of conserved amino acids in mediating the interaction between EBNA2 and CBFl/RBPJk. J Virol 69:1944–1950

    PubMed  CAS  Google Scholar 

  • Longnecker R, Miller CL, Tomkinson B, Miao XQ, Kieff E (1993) Deletion of DNA encoding the first five transmembrane domains of Epstein-Barr virus latent membrane proteins 2A and 2B. J Virol 67:5068–5074

    PubMed  CAS  Google Scholar 

  • Marchini A, Tomkinson B, Cohen JI, Kieff E (1991) BHRF1 the Epstein-Barr virus gene with homology to Bc12 is dispensable for B-lymphocyte transformation and virus replication. J Virol 65:5991–6000

    PubMed  CAS  Google Scholar 

  • MoghaddamA,KochJ,AnnisB,WangF(1998)Infectionof humanBlymphocyteswith lymphocryptoviruses related to Epstein-Barr virus. J Virol 72:3205–3212

    PubMed  CAS  Google Scholar 

  • Moghaddam A, Rosenzweig M, Lee-Parritz D, Annis B, Johnson RP, Wang F (1997) An animal model for acute and persistent Epstein-Barr virus infection. Science 276:2030–2033

    Article  PubMed  CAS  Google Scholar 

  • Mosier DE (1996) Viral pathogenesis in hu-PBL-SCID mice. Semin Immunol 8:255–262

    Article  PubMed  CAS  Google Scholar 

  • Neubauer RH, Rabin H, Strnad BC, Nonoyama M, Nelson RW (1979) Establishment of a lympho-blastoid cell line and isolation of an Epstein-Barr-related virus of gorilla origin. J Virol 31:845–848

    PubMed  CAS  Google Scholar 

  • O’Gara RW, Adamson RH, Kelly MG, Dalgard DW (1971) Neoplasms of the hematopoietic system in nonhuman primates: report of one spontaneous tumor and two leukemias induced by procarbazine. J Natl Cancer Inst 46:1121–1130

    PubMed  Google Scholar 

  • Peng R, Gordadze AV, Fuentes Panana EM, Wang F, Zong J, Hayward GS, Tan J, Ling PD (2000) Sequence and functional analysis of EBNA-LP and EBNA2 proteins from nonhuman primate lymphocryptoviruses. J Virol 74:379–389

    Article  PubMed  CAS  Google Scholar 

  • Rabin H, Neubauer RH, Hopkins R ed, Rasheed S (1978) In vitro lymphocyte transformation by Epstein-Barr virus (EBV)-like viruses isolated from Old-World non-human primates. Iarc Sci Publ 553–557

    Google Scholar 

  • Rabin H, Neubauer RH, Hopkins RF, Dzhikidze EK, Shevtsova ZV, Lapin BA (1977) Transforming activity and antigenicity of an Epstein-Barr-like virus from lymphoblastoid cell lines of baboons with lymphoid disease. Intervirology 8:240–249

    Article  PubMed  CAS  Google Scholar 

  • Rabin H, Neubauer RH, Hopkins RFd, Nonoyama M (1978) Further characterization of a herpesvirus-positive orang-utan cell line and comparative aspects of in vitro transformation with lymphotropic old world primate herpesviruses. Int J Cancer 21:762–767

    Article  PubMed  CAS  Google Scholar 

  • Rangan SR, Martin LN, Bozelka BE, Wang N, Gormus BJ (1986) Epstein-Barr virus-related herpesvirus from a rhesus monkey (Macaca mulatta) with malignant lymphoma. Int J Cancer 38:425–432

    Article  PubMed  CAS  Google Scholar 

  • Rao P, Jiang H, Kaur A, Wang F (1999) Acute and persistent viral loads using real-time PCR after experimentallymphocryptovirusinfectionof rhesusmonkeys.24thInternationalHerpesvirus Workshop Abstract 10.010

    Google Scholar 

  • Rao P, Jiang H, Wang F (2000) Cloning of the rhesus lymphocryptovirus viral capsid antigen and Epstein-Barr virus-encoded small RNA homologues and use in diagnosis of acute and persistent infections. J Clin Microbiol 38(9):3219–3225

    PubMed  CAS  Google Scholar 

  • Rasheed S, Rongey RW, Bruszweski J, Nelson-Rees WA, Rabin H, Neubauer RH, Esra G, Gardner MB (1977) Establishment of a cell line with associated Epstein-Barr-like virus from a leukemic orangutan. Science 198:407–409

    Article  PubMed  CAS  Google Scholar 

  • Reimann KA, Li JT, Veazey R, Halloran M, Park IW, Karlsson GB, Sodroski J, Letvin NL (1996) A chimeric simian/human immunodeficiency virus expressing a primary patient human immunodeficiency virus type 1 isolate env causes an AIDS-like disease after in vivo passage in rhesus monkeys. J Virol 70:6922–6928

    PubMed  CAS  Google Scholar 

  • Rivailler P, Quink C, Wang F (1999) Strong selective pressure for evolution of an Epstein-Barr virus LMP2B homolog in the rhesus lymphocryptovirus. J Virol 73:8867–8872

    PubMed  CAS  Google Scholar 

  • Robertson ES, Ooka T, Kieff ED (1996) Epstein-Barr virus vectors for gene delivery to B lymphocytes. Proc Natl Acad Sci USA 93:11334–11340

    Article  PubMed  CAS  Google Scholar 

  • Rosa MD, Gottlieb E, Lerner MR, Steitz JA (1981) Striking similarities are exhibited by two small Epstein-Barr virus-encoded ribonucleic acids and the adenovirus-associated ribonucleic acids VAI and VAIL Mol Cell Biol 1:785–796

    CAS  Google Scholar 

  • Rowe M, Rowe DT, Gregory CD, Young LS, Farrell PJ, Rupani H, Rickinson AB (1987) Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt’s lymphoma cells. Embo J 6:2743–2751

    PubMed  CAS  Google Scholar 

  • Rowlands DC, Ito M, Mangham DC, Reynolds G, Herbst H, Hallissey MT, Fielding JW, Newbold KM, Jones EL, Young LS, et al. (1993) Epstein-Barr virus and carcinomas: rare association of the virus with gastric adenocarcinomas. Br J Cancer 68:1014–1019

    Article  PubMed  CAS  Google Scholar 

  • Ruf IK, Moghaddam A, Wang F, Sample J (1999) Mechanisms that regulate Epstein-Barr virus EBNA-1 gene transcription during restricted latency are conserved among lymphocryptoviruses of Old World primates. J Virol 73:1980–1989

    PubMed  CAS  Google Scholar 

  • Schable CA, Murphy BL, Berquist KR, Gravelle CR, Maynard JE (1974) Inability to detect hepatitis B virus or specific antigens in transformed chimpanzee lymphocytes. Infect Immun 10:1443–1444

    PubMed  CAS  Google Scholar 

  • Sixbey JW, Shirley P, Chesney PJ, Buntin DM, Resnick L (1989) Detection of a second widespread strain of Epstein-Barr virus. Lancet 2:761–765

    Article  PubMed  CAS  Google Scholar 

  • Steven NM, Anneis NE, Kumar A, Leese AM, Kurilla MG, Rickinson AB (1997) Immediate early and early lytic cycle proteins are frequent targets of the Epstein-Barr virus-induced cytotoxic T cell response. J Exp Med 185:1605–1617

    Article  PubMed  CAS  Google Scholar 

  • Steven NM, Leese AM, Anneis NE, Lee SP, Rickinson AB (1996) Epitope focusing in the primary cytotoxic T cell response to Epstein-Barr virus and its relationship to T cell memory. J Exp Med 184:1801–1813

    Article  PubMed  CAS  Google Scholar 

  • Stevens DA, Pry TW, Blackham EA, Manaker RA (1970) Comparison of antigens from human and chimpanzee herpes-type virus-infected hemic cell lines. Proc Soc Exp Biol Med 133:678–683

    PubMed  CAS  Google Scholar 

  • Swaminathan S, Hesselton R, Sullivan J, Kieff E (1993) Epstein-Barr virus recombinants with specifically mutated BCRF1 genes. J Virol 67:7406–7413

    PubMed  CAS  Google Scholar 

  • Swaminathan S, Huneycutt BS, Reiss CS, Kieff E (1992) Epstein-Barr virus-encoded small RNAs (EBERs) do not modulate interferon effects in infected lymphocytes. J Virol 66:5133–5136

    PubMed  CAS  Google Scholar 

  • Taga H, Taga K, Wang F, Chretien J, Tosato G (1995) Human and viral interleukin-10 in acute Epstein-Barr virus-induced infectious mononucleosis. J Infect Dis 171:1347–1350

    Article  PubMed  CAS  Google Scholar 

  • Tomkinson B, Kieff E (1992) Use of second-site homologous recombination to demonstrate that Epstein-Barr virus nuclear protein 3B is not important for lymphocyte infection or growth transformation in vitro. J Virol 66:2893–2903

    PubMed  CAS  Google Scholar 

  • Wang F (1999) Epstein-Barr Virus and Human Herpesvirus-8. In: Yu VL, Merigan TC, Barriere SL (eds) Antimicrobial Therapy and Vaccines. Williams & Wilkins, Baltimore, pp 1215–1219

    Google Scholar 

  • Yates JL, Camiolo SM, Ali S, Ying A (1996) Comparison of the EBNA1 proteins of Epstein-Barr virus and herpesvirus papio in sequence and function. Virology 222:1–13

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, F. (2001). A New Animal Model for Epstein-Barr Virus Pathogenesis. In: Takada, K. (eds) Epstein-Barr Virus and Human Cancer. Current Topics in Microbiology and Immunology, vol 258. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56515-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56515-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62568-8

  • Online ISBN: 978-3-642-56515-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics