Skip to main content

Heaviside World: Excitation and Self-Organization of Neural Fields

  • Chapter
  • First Online:
Book cover Neural Fields

Abstract

Mathematical treatments of the dynamics of neural fields become much simpler when the Heaviside function is used as an activation function. This is because the dynamics of an excited or active region reduce to the dynamics of the boundary. We call this regime the Heaviside world. Here, we visit the Heaviside world and briefly review bump dynamics in the 1D, 1D two-layer, and 2D cases. We further review the dynamics of forming topological maps by self-organization. The Heaviside world is useful for studying the learning or self-organization equation of receptive fields. The stability analysis shows the formation of a continuous map or the emergence of a block structure responsible for columnar microstructures. The stability of the Kohonen map is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amari, S.: Characteristics of randomly connected threshold-element networks and network systems. Proc. IEEE 59(1), 35–47 (1971)

    Article  MathSciNet  Google Scholar 

  2. Amari, S.: Characteristics of random nets of analog neuron-like elements. IEEE Trans. Syst. Man Cybern. (SMC) 2(5), 643–657 (1972). (Also Vemri, V. (ed.): Artificial Neural Networks Theoretical Concepts. IEEE Computer Society (1988))

    Google Scholar 

  3. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  4. Amari, S.: Topographic organization of nerve fields. Bull. Math. Biol. 42, 339–364 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bressloff, P.C.: Spatiotemporal dynamics of continuum neural fields. J. Phys. A 45, 1–109 (2012)

    Article  MathSciNet  Google Scholar 

  6. Bressloff, P.C., Coombes, S.: Neural ‘bubble’ dynamics revisited. Cogn. Comput. 5, 281–294 (2013)

    Article  Google Scholar 

  7. Coombes, S., Schmidt, H., Bojak, I.: Interface dynamics in planar neural field models. J. Math. Neurosci. 2, 9 (2012)

    Article  MathSciNet  Google Scholar 

  8. Folias, S.E.: Nonlinear analysis of breathing pulses in synaptically coupled excitable neural activity. J. Comput. Neurosci. 11, 121–134 (2011)

    Google Scholar 

  9. Folias, S.E., Bressloff, P.C.: Breathing pulses in an excitatory neural network. SIAM J. Appl. Dyn. Syst. 3, 378–407 (1974)

    Article  MathSciNet  Google Scholar 

  10. Fung, C.A., Wong, M., Wang, H., Wu, S.: Dynamical synapses enhance neural information processing: Gracefulness, accuracy and mobility. Neural Comput. 24, 1147–1185 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kurata, K.: Formation of information representation by self-organization. In: Japanese Association of Industrial Technology (eds.) Basics of Neurocomputing, chap. 5. Japanese Association of Industrial Technology, Tokyo (1989). in Japanese

    Google Scholar 

  13. Lu, Y., Sato, Y., Amari, S.: Travelling bumps and their collisions in a two-dimensional neural field. Neural Comput. 23, 1248–1260 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Seung, H.S.: Continuous attractors and oculomotor control. Neural Netw. 11, 1253–58 (1998)

    Article  Google Scholar 

  15. Takeuchi, A., Amari, S.: Formation of topographic maps and columnar microstructures. Biol. Cybern. 35, 63–72 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  16. von der Malsburg, C.: Self-organization of orientation sensitivity and columns in the visual cortex. Kybernetik 14, 85–100 (1973)

    Article  Google Scholar 

  17. Willshaw, D.J., von der Malsburg, C.: How patterned neural connections can be set up by self-organization. Proc. R. Soc. B 194, 431–445 (1976)

    Article  Google Scholar 

  18. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972)

    Article  Google Scholar 

  19. Wu, S., Amari, S.: Computing with continuous attractors: Stability and on-line aspects. Neural Comput. 17, 2215–2239 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-ichi Amari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Amari, Si. (2014). Heaviside World: Excitation and Self-Organization of Neural Fields. In: Coombes, S., beim Graben, P., Potthast, R., Wright, J. (eds) Neural Fields. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54593-1_3

Download citation

Publish with us

Policies and ethics