Skip to main content

The Virtual Operating Field: How Image Guidance Became Integral to Microneurosurgery

  • Chapter
  • First Online:
Samii's Essentials in Neurosurgery

Abstract

In neurosurgery, layers of soft tissue, bone, and parenchyma conceal vital structures, landmarks, and the targeted lesion. Guiding an approach to a lesion with the help of computed tomography (CT), magnetic resonance imaging (MRI), or ultrasound images of the anatomy of a patient enables avoidance of accidental damage and the definition of a clear surgical corridor in individually uncharted territory. Today, surgical image guidance based on three-dimensional volumetric data has become part of the routine in most neurosurgical centres around the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander E III, Maciunas RJ (1999) Advanced neurosurgical navigation. Thieme, New York

    Google Scholar 

  2. Bonsanto MM, Metzner R, Aschoff A et al (2005) 3D ultrasound navigation m syrinx surgery – a feasibility study. Acta Neurochir (Wien) 147(5):533–540

    Article  CAS  Google Scholar 

  3. Dey D, Gobbi DG, Slomka PJ et al (2002) Automatic fusion of freehand endoscopic brain images to three-dimensional surfaces: creating stereoscopic panoramas. IEEE Trans Med Imaging 21(1):23–30

    Article  PubMed  Google Scholar 

  4. Doshi PK, Lemmieux L, Fish DR et al (1995) Frameless stereotaxy and interactive neurosurgery with the ISG viewing wand. Acta Neurochir Suppl 64:49–53

    Article  CAS  PubMed  Google Scholar 

  5. Gharabaghi A, Hellwig D, Rosahl SK et al (2005) Volumetric image guidance for motor cortex stimulation: integration of three-dimensional cortical anatomy and functional imaging. Neurosurgery 57(1 Suppl):114–120

    Article  PubMed  Google Scholar 

  6. Gharabaghi A et al (2008) Image-guided craniotomy for frontal sinus preservation during meningioma surgery. Eur J Surg Oncol 34(8):928–931

    Article  CAS  PubMed  Google Scholar 

  7. Gharabaghi A et al (2008) Image-guided lateral suboccipital approach: part 2-impact on complication rates and operation times. Neurosurgery 62(3 Suppl 1):24–29

    Article  PubMed  Google Scholar 

  8. Gharabaghi A et al (2008) Image-guided lateral suboccipital approach: part 1-individualized landmarks for surgical planning. Neurosurgery 62(3 Suppl 1):18–22

    Article  PubMed  Google Scholar 

  9. Gronningsaeter A, Lie T, Kleven A et al (2000) Initial experience with stereoscopic visualization of three-dimensional ultrasound data in surgery. Surg Endosc 14(11):1074–1078

    Article  CAS  PubMed  Google Scholar 

  10. Grummich P, Nimsky C, Pauli E et al (2006) Combining fMRI and MEG increases the reliability of presurgical language localization: a clinical study on the difference between and congruence of both modalities. Neuroimage 32(4):1793–1803

    Article  PubMed  Google Scholar 

  11. Hastreiter P, Engel K, Soza G et al (2003) Remote computing environment compensating for brain shift. Comput Aided Surg 8(4):169–179

    Article  PubMed  Google Scholar 

  12. Hemes TA, Ommedal S, Lie T et al (2003) Stereoscopic navigation-controlled display of preoperative MRI and intraoperative 3D ultrasound in planning and guidance of neurosurgery: new technology for minimally invasive image guided surgery approaches. Minim Invasive Neurosurg 46(3):129–137

    Article  Google Scholar 

  13. Henn JS, Lemole GM Jr, Ferreira MA et al (2002) Interactive stereoscopic virtual reality: a new tool for neurosurgical education. Technical note. J Neurosurg 96(1):144–149

    Article  PubMed  Google Scholar 

  14. Hernes TA, Ommedal S, Lie T et al (2003) Stereoscopic navigation-controlled display of preoperative MRI and intraoperative 3D ultrasound in planning and guidance of neurosurgery: new technology for minimally invasive image guided surgery approaches. Minim Invasive Neurosurg 46(3):129–137

    Article  PubMed  Google Scholar 

  15. Hinckley K, Pausch R, Downs JH et al (1997) The props-based interface for neurosurgical visualization. Stud Health Technol Inform 39:552–562

    CAS  PubMed  Google Scholar 

  16. Jannin P, Bouliou A, Journet E et al (1996) A ray-traced texture mapping for enhanced virtuality in image-guided neurosurgery. Stud Health Technol Inform 29:553–563

    CAS  PubMed  Google Scholar 

  17. Jannin P, Fleig OJ, Seigneuret E et al (2000) A data fusion environment for multimodal and multi-informational neuronavigation. Comput Aided Surg 5(1):1–10

    Article  CAS  PubMed  Google Scholar 

  18. John NW (2002) Using stereoscopy for medical virtual reality. Stud Health Technol Inform 85:214–220

    PubMed  Google Scholar 

  19. Johnson LG, Edwards P, Hawkes D (2003) Surface transparency makes stereo overlays unpredictable: the implications for augmented reality. Stud Health Technol Inform 94:131–136

    PubMed  Google Scholar 

  20. King AP, Edwards PJ, Maurer CR Jr et al (1999) A system for microscope-assisted guided interventions. Stereotact Funct Neurosurg 72(2–4):107–111

    Article  CAS  PubMed  Google Scholar 

  21. Kockro RA, Serra L, Tseng-Tsai Y et al (2000) Planning and simulation of neurosurgery in a virtual reality environment. Neurosurgery 46(1):118–135

    Article  CAS  PubMed  Google Scholar 

  22. Kolstad F, Rygh OM, Selbekk T et al (2006) Three-dimensional ultrasonography navigation in spinal cord tumor surgery. Technical note. J Neurosurg Spine 5(3):264–270

    Article  PubMed  Google Scholar 

  23. Larsen OV, Haase J, Ostergaard LR et al (2001) The Virtual Brain Project-development of a neurosurgical simulator. Stud Health Technol Inform 81:256–262

    CAS  PubMed  Google Scholar 

  24. Li Y, Brodlie K, Phillips N (2002) Real-time soft tissue modeling for web-based surgical simulation: surface Chain Mail. Stud Health Technol Inform 85:261–267

    CAS  PubMed  Google Scholar 

  25. Lindseth F, Kaspersen JH, Ommedal S et al (2003) Multimodal image fusion in ultrasound-based neuronavigation: improving overview and interpretation by integrating preoperative MRI with intraoperative 3D ultrasound. Comput Aided Surg 8(2):49–69

    Article  PubMed  Google Scholar 

  26. Lindseth F, Lango T, Bang J et al (2002) Accuracy evaluation of a 3D ultrasound-based neuronavigation system. Comput Aided Surg 7(4):197–222

    Article  PubMed  Google Scholar 

  27. Miller A, Alien P, Fowler D (2004) In-vivo stereoscopic imaging system with 5 degrees-of-freedom for minimal access surgery. Stud Health Technol Inform 98:234–240

    PubMed  Google Scholar 

  28. Mitchell P, Wilkinson ID, Griffiths PD et al (2002) A stereoscope for image-guided surgery. Br J Neurosurg 16(3):261–266

    Article  CAS  PubMed  Google Scholar 

  29. Morris K, O’Brien TJ, Cook MJ et al (2004) A computer-generated stereotactic “Virtual Subdural Grid” to guide resective epilepsy surgery. AJNR Am J Neuroradiol 25(1):77–83

    PubMed  Google Scholar 

  30. Nimsky C, Ganslandt O, Buchfelder M et al (2006) Intraoperative visualization for resection of gliomas: the role of functional neuronavigation and intraoperative 1.5 T MRI. NeuroI Res 28(5):482–487

    Article  Google Scholar 

  31. Nimsky C, Ganslandt O, Fahlbusch R (2006) Implementation of fiber tract navigation. Neurosurgery 58(4 Suppl 2):ONS-292–303

    Google Scholar 

  32. Nimsky C, Ganslandt O, Kober H et al (1999) Integration of functional magnetic resonance imaging supported by magnetoencephalography in functional neuronavigation. Neurosurgery 44(6):1249–1255

    PubMed  Google Scholar 

  33. Nimsky C, Grummich P, Sorensen AG et al (2005) Visualization of the pyramidal tract in glioma surgery by integrating diffusion tensor imaging in functional neuronavigation. Zentralbl Neurochir 66(3):133–141

    Article  CAS  PubMed  Google Scholar 

  34. Pailatrom H, Hartov A, Mclnerney J et al (1999) Coregistered ultrasound as a neurosurgical guide. Stereotact Funct Neurosurg 73(1–4):143–147

    Article  Google Scholar 

  35. Peters TM (2000) Image-guided surgery: from X-rays to virtual reality. Comput Methods Biomech Biomed Engin 4(1):27–57

    Article  CAS  PubMed  Google Scholar 

  36. Peters TM, Henn CJ, Munger P et al (1994) Integration of stereoscopic DSA and 3D MRI for image-guided neurosurgery. Comput Med Imaging Graph 18(4):289–299

    Article  CAS  PubMed  Google Scholar 

  37. Rachinger J, von Keller B, Ganslandt O et al (2006) Application accuracy of automatic registration in frameless stereotaxy. Stereotact Funct Neurosurg 84(2–3):109–117

    Article  PubMed  Google Scholar 

  38. Ribas GC, Bento RF, Rodrigues AJ Jr (2001) Anaglyphic three-dimensional stereoscopic printing: revival of an old method for anatomical and surgical teaching and reporting. J Neurosurg 95(6):1057–1066

    Article  CAS  PubMed  Google Scholar 

  39. Rosahl SK, Gharabaghi A, Hubbe U et al (2006) Virtual reality augmentation in skull base surgery. Skull Base 16(2):59–66

    Article  PubMed Central  PubMed  Google Scholar 

  40. Rygh OM, Cappelen J, Selbekk T et al (2006) Endoscopy guided by an intraoperative 3D ultrasound-based neuronavigation system. Minim Invasive Neurosurg 49(1):1–9

    Article  CAS  PubMed  Google Scholar 

  41. Sebastiano F, Di Gennaro G, Esposito V et al (2006) A rapid and reliable procedure to localize subdural electrodes in presurgical evaluation of patients with drug-resistant focal epilepsy. Clin Neurophysiol 117(2):341–347

    Article  CAS  PubMed  Google Scholar 

  42. Serra L, Kockro R, Goh LC et al (2002) The DextroBeam: a stereoscopic presentation system for volumetric medical data. Stud Health Technol Inform 85:478–484

    PubMed  Google Scholar 

  43. Shahidi R, Bax MR, Maurer CR Jr et al (2002) Implementation, calibration and accuracy testing of an image-enhanced endoscopy system. IEEE Trans Med Imaging 21(12):1524–1535

    Article  PubMed  Google Scholar 

  44. Skare S, Andersson JL (2005) Correction of MR image distortions induced by metallic objects using a 3D cubic B-spline basis set: application to stereotactic surgical planning. Magn Reson Med 54(1):169–181

    Article  CAS  PubMed  Google Scholar 

  45. Stredney D, Wiet GJ, Bryan J et al (2002) Temporal bone dissection simulation – an update. Stud Health Technol Inform 85:507–513

    CAS  PubMed  Google Scholar 

  46. Trobaugh JW, Trobaugh DJ, Richard WD (1994) Three-dimensional imaging with stereotactic ultrasonography. Comput Med Imaging Graph 18(5):315–323

    Article  CAS  PubMed  Google Scholar 

  47. Unsgaard G, Rygh OM, Selbekk T et al (2006) Intra-operative 3D ultrasound in neurosurgery. Acta Neurochir (Wien) 148(3):235–253

    Article  CAS  Google Scholar 

  48. Walton L, Hampshire A, Forster DM et al (1996) Accuracy of stereotactic localization using magnetic resonance imaging: a comparison between two- and three-dimensional studies. Stereotact Funct Neurosurg 66(Suppl 1):49–56

    Article  PubMed  Google Scholar 

  49. Wang D, Doddrell DM, Cowin G (2004) A novel phantom and method for comprehensive 3-dimensional measurement and correction of geometric distortion in magnetic resonance imaging. Magn Reson Imaging 22(4):529–542

    Article  PubMed  Google Scholar 

  50. West JB, Fitzpatrick JM, Toms SA, Maurer CR Jr, Maciunas RJ (2001) Fiducial point placement and the accuracy of point-based, rigid body registration. Neurosurgery 48(4):810–816

    CAS  PubMed  Google Scholar 

  51. Wilkinson EP, Shahidi R, Wang B et al (1999) Remote rendered 3D CT angiography (3DCTA) as an intraoperative aid in cerebrovascular neurosurgery. Comput Aided Surg 4(5):256–263

    Article  CAS  PubMed  Google Scholar 

  52. Winder RI, McKnight W, McRitchie I, Montgomery D, Wulf J (2006) 3D surface accuracy of CAD generated skull defect contour. Stud Health Technol Inform 119:574–576

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen K. Rosahl MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosahl, S.K., Shahidi, R. (2014). The Virtual Operating Field: How Image Guidance Became Integral to Microneurosurgery. In: Ramina, R., de Aguiar, P., Tatagiba, M. (eds) Samii's Essentials in Neurosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54115-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-54115-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-54114-8

  • Online ISBN: 978-3-642-54115-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics