Skip to main content

Abstract

Carbon nanotubes (CNTs) with their remarkable set of intrinsic properties are outstanding materials to incorporate in and augment the properties of polymer matrices. Poly(ethylene oxide) (PEO) is a water-soluble, biocompatible polymer that has found various technological applications including as solid electrolytes in lithium-ion batteries and in various biomedical and tissue engineering applications. Homogeneous dispersion of anisotropic nanoparticles, especially carbon nanotubes, in a matrix polymer is hindered by strong inter-tube attraction and a weak entropic driving force for the disruption of nematic order of such rodlike nanoparticles. In this chapter, we discuss different pathways to disperse carbon nanotubes in PEO matrix and techniques to quantitatively characterize the state of dispersion. Beyond the geometrical percolation threshold, in their quiescent state, dispersed nanotubes show hierarchical fractal network consisting of aggregated flocs. Internal to the flocs, individual or small bundles of nanotubes overlap each other to form a dense mesh. The inter-floc interaction dominates the linear viscoelasticity. The nonlinear viscoelastic behavior is independent of network size and dominated by cluster dynamics. Interestingly, significant changes in the melting and crystallization behavior of PEO along with a decrease in fractional crystallinity in the presence of carbon nanotubes have been observed. The observed changes significantly exceed those observed for an equivalent Li+ ion concentration mixture. This finding is particularly interesting considering amorphous segment of PEO chains are responsible for ion transport in solid polymer electrolytes. Besides this other technological applications of the carbon nanotube-based PEO nanocomposites will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314(5802):1107–1110

    ADS  Google Scholar 

  2. Krishnamoorti R, Vaia RA (2007) Polymer nanocomposites. J Polym Sci B 45:3252–3256

    Google Scholar 

  3. Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32(4):314–319

    Google Scholar 

  4. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    ADS  Google Scholar 

  5. Tasis D et al (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136

    Google Scholar 

  6. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99(7):1787–1799

    Google Scholar 

  7. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes. Imperial College Press, London

    Google Scholar 

  8. Edman L (2000) Ion association and ion solvation effects at the crystalline-amorphous phase transition in PEO-LiTFSI. J Phys Chem B 104(31):7254–7258

    Google Scholar 

  9. Edman L et al (2000) Transport properties of the solid polymer electrolyte system P(EO)(n)LiTFSI. J Phys Chem B 104(15):3476–3480

    Google Scholar 

  10. Edman L, Ferry A, Doeff MM (2000) Slow recrystallization in the polymer electrolyte system poly(ethylene oxide)(n)-LiN(CF3SO2)(2). J Mater Res 15(9):1950–1954

    ADS  Google Scholar 

  11. Edman L, Ferry A, Jacobsson P (1999) Effect of C-60 as a filler on the morphology of polymer-salt complexes based on poly(ethylene oxide) and LiCF3SO3. Macromolecules 32(12):4130–4133

    ADS  Google Scholar 

  12. Meyer WH (1998) Polymer electrolytes for lithium-ion batteries. Adv Mater 10(6):439–448

    ADS  Google Scholar 

  13. Ojha SS et al (2008) Fabrication and characterization of electrospun chitosan nanofibers formed via templating with polyethylene oxide. Biomacromolecules 9(9):2523–2529

    Google Scholar 

  14. Shi XF et al (2006) Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering. Biomacromolecules 7(7):2237–2242

    Google Scholar 

  15. Barraza HJ et al (2002) SWNT-filled thermoplastic and elastomeric composites prepared by miniemulsion polymerization. Nano Lett 2(8):797–802

    ADS  Google Scholar 

  16. Du FM, Fischer JE, Winey KI (2003) Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. J Polym Sci B Polym Phys 41(24):3333–3338

    ADS  Google Scholar 

  17. Mitchell CA, Krishnamoorti R (2007) Dispersion of single-walled carbon nanotubes in poly(epsilon-caprolactone). Macromolecules 40(5):1538–1545

    ADS  Google Scholar 

  18. Probst O et al (2004) Nucleation of polyvinyl alcohol crystallization by single-walled carbon nanotubes. Polymer 45(13):4437–4443

    Google Scholar 

  19. Krishnamoorti R (2007) Strategies for dispersing nanoparticles in polymers. MRS Bull 32(4):341–347

    Google Scholar 

  20. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205

    ADS  Google Scholar 

  21. Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62(19):13104–13110

    ADS  Google Scholar 

  22. Bahr JL et al (2001) Dissolution of small diameter single-wall carbon nanotubes in organic solvents? Chem Commun 2:193–194

    Google Scholar 

  23. Ausman KD et al (2000) Organic solvent dispersions of single-walled carbon nanotubes: toward solutions of pristine nanotubes. J Phys Chem B 104(38):8911–8915

    Google Scholar 

  24. Israelachvili J (1992) Intermolecular and surface forces, 2nd edn. Elsevier, New York

    Google Scholar 

  25. Dyke CA, Tour JM (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108(51):11151–11159

    Google Scholar 

  26. Dyke CA, Tour JM (2003) Solvent-free functionalization of carbon nanotubes. J Am Chem Soc 125(5):1156–1157

    Google Scholar 

  27. Banerjee S, Hemraj-Benny T, Wong SS (2005) Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater 17(1):17–29

    Google Scholar 

  28. Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes. J Mater Chem 12(7):1952–1958

    Google Scholar 

  29. Mitchell CA et al (2002) Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35(23):8825–8830

    ADS  Google Scholar 

  30. Park C et al (2002) Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett 364(3–4):303–308

    ADS  Google Scholar 

  31. Putz KW et al (2004) Elastic modulus of single-walled carbon nanotube/poly(methyl methacrylate) nanocomposites. J Polym Sci B Polym Phys 42(12):2286–2293

    ADS  Google Scholar 

  32. Zhang XF et al (2003) Poly(vinyl alcohol)/SWNT composite film. Nano Lett 3(9):1285–1288

    ADS  Google Scholar 

  33. Chatterjee T et al (2005) Single-walled carbon nanotube dispersions in poly(ethylene oxide). Adv Funct Mater 15(11):1832–1838

    Google Scholar 

  34. Hough LA et al (2006) Structure of semidilute single-wall carbon nanotube suspensions and gels. Nano Lett 6(2):313–317

    ADS  Google Scholar 

  35. Yurekli K, Mitchell CA, Krishnamoorti R (2004) Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes. J Am Chem Soc 126(32):9902–9903

    Google Scholar 

  36. Clark MD, Subramanian S, Krishnamoorti R (2011) Understanding surfactant aided aqueous dispersion of multi-walled carbon nanotubes. J Colloid Interface Sci 354(1):144–151

    Google Scholar 

  37. Liang F et al (2004) A convenient route to functionalized carbon nanotubes. Nano Lett 4(7):1257–1260

    ADS  Google Scholar 

  38. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036

    Google Scholar 

  39. Pedersen CJ (1988) The discovery of crown ethers. Science 241(4865):536–540

    ADS  Google Scholar 

  40. Park M et al (2011) Excellent dispersion of MWCNTs in PEO polymer achieved through a simple and potentially cost-effective evaporation casting. Nanotechnology 22(41):415703

    Google Scholar 

  41. Chatterjee T, Lorenzo AT, Krishnamoorti R (2011) Poly(ethylene oxide) crystallization in single walled carbon nanotube based nanocomposites: kinetics and structural consequences. Polymer 52(21):4938–4946

    Google Scholar 

  42. Shvartzman-Cohen R et al (2004) Selective dispersion of single-walled carbon nanotubes in the presence of polymers: the role of molecular and colloidal length scales. J Am Chem Soc 126(45):14850–14857

    Google Scholar 

  43. Szleifer I, Yerushalmi-Rozen R (2005) Polymers and carbon nanotubes – dimensionality, interactions and nanotechnology. Polymer 46(19):7803–7818

    Google Scholar 

  44. Yerushalmi-Rozen R, Szleifer I (2006) Utilizing polymers for shaping the interfacial behavior of carbon nanotubes. Soft Matter 2(1):24–28

    ADS  Google Scholar 

  45. Semaan C, Schappacher M, Soum A (2012) Dispersion of carbon nanotubes through amphiphilic block copolymers: rheological and dielectrical characterizations of poly(ethylene oxide) composites. Polym Compos 33(1):1–9

    Google Scholar 

  46. Moore VC et al (2003) Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 3(10):1379–1382

    ADS  Google Scholar 

  47. Graff RA et al (2005) Achieving individual-nanotube dispersion at high loading in single-walled carbon nanotube composites. Adv Mater 17(8):980–984

    Google Scholar 

  48. Fagan JA et al (2006) Comparative measures of single-wall carbon nanotube dispersion. J Phys Chem B 110(47):23801–23805

    Google Scholar 

  49. Vaisman L, Marom G, Wagner HD (2006) Dispersions of surface-modified carbon nanotubes in water-soluble and water-insoluble polymers. Adv Funct Mater 16(3):357–363

    Google Scholar 

  50. Guth EJ (1945) Theory of filler reinforcement. J Appl Phys 16:20–25

    ADS  Google Scholar 

  51. Schaefer DW, Chen CY (2002) Structure optimization in colloidal reinforcing fillers: precipitated silica. Rubber Chem Technol 75(5):773–793

    Google Scholar 

  52. Garboczi EJ et al (1995) Geometrical percolation threshold of overlapping ellipsoids. Phys Rev E 52:519–528

    Google Scholar 

  53. Meincke O et al (2004) Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45(3):739–748

    Google Scholar 

  54. Potschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247–3255

    Google Scholar 

  55. Du FM et al (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37(24):9048–9055

    ADS  Google Scholar 

  56. Potschke P et al (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45:8863–8870

    Google Scholar 

  57. Head DA et al (2003) Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Phys Rev E 68:061907

    ADS  Google Scholar 

  58. Kharchenko SB et al (2004) Flow-induced properties of nanotube-filled polymer materials. Nat Mater 3(8):564–568

    ADS  Google Scholar 

  59. Brown JM et al (2005) Hierarchical morphology of carbon single-walled nanotubes during sonication in an aliphatic diamine. Polymer 46(24):10854–10865

    Google Scholar 

  60. Schaefer D et al (2003) Structure and dispersion of carbon nanotubes. J Appl Crystallogr 36:553–557

    Google Scholar 

  61. Schaefer DW et al (2003) Morphology of dispersed carbon single-walled nanotubes. Chem Phys Lett 375(3–4):369–375

    ADS  Google Scholar 

  62. Chatterjee T, Jackson A, Krishnamoorti R (2008) Hierarchical structure of carbon nanotube networks. J Am Chem Soc 130(22):6934–6935

    Google Scholar 

  63. Barker JG et al (2005) Design and performance of a thermal-neutron double-crystal diffractometer for USANS at NIST. J Appl Crystallogr 38:1004–1011

    ADS  Google Scholar 

  64. Glinka CJ et al (1998) The 30 m small-angle neutron scattering instruments at the National Institute of Standards and Technology. J Appl Crystallogr 31:430–445

    Google Scholar 

  65. Ortony JH et al (2011) Self-assembly of an optically active conjugated oligoelectrolyte. J Am Chem Soc 133(21):8380–8387

    Google Scholar 

  66. Kline SR (2006) Reduction and analysis of SANS and USANS data using IGOR Pro. J Appl Crystallogr 39:895–900

    Google Scholar 

  67. Beaucage G (1996) Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J Appl Crystallogr 29:134–146

    Google Scholar 

  68. Bauer BJ, Hobbie EK, Becker ML (2006) Small-angle neutron scattering from labeled single-wall carbon nanotubes. Macromolecules 39(7):2637–2642

    ADS  Google Scholar 

  69. Hough LA et al (2004) Viscoelasticity of single wall carbon nanotube suspensions. Phys Rev Lett 93(16):168102

    ADS  Google Scholar 

  70. Shih WH et al (1990) Scaling behavior of the elastic properties of colloidal gels. Phys Rev A 42(8):4772–4779

    ADS  Google Scholar 

  71. Philipse AP (1996) The random contact equation and its implications for (colloidal) rods in packings, suspensions, and anisotropic powders. Langmuir 12(5):1127–1133

    Google Scholar 

  72. Schmidt CF et al (1989) Chain dynamics, mesh size, and diffusive transport in networks of polymerized actin – a quasielastic light-scattering and microfluorescence study. Macromolecules 22(9):3638–3649

    ADS  Google Scholar 

  73. Duggal R, Pasquali M (2006) Dynamics of individual single-walled carbon nanotubes in water by real-time visualization. Phys Rev Lett 96(24):246104–246107

    ADS  Google Scholar 

  74. Li XL et al (2007) Langmuir-Blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. J Am Chem Soc 129(16):4890–4891

    Google Scholar 

  75. Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R-Rep 49(4):89–112

    Google Scholar 

  76. Hussain F et al (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40(17):1511–1575

    Google Scholar 

  77. Sano M et al (2001) Self-organization of PEO-graft-single-walled carbon nanotubes in solutions and Langmuir-Blodgett films. Langmuir 17(17):5125–5128

    Google Scholar 

  78. Nativ-Roth E et al (2007) Physical adsorption of block copolymers to SWNT and MWNT: a nonwrapping mechanism. Macromolecules 40(10):3676–3685

    ADS  Google Scholar 

  79. Granite M et al (2011) Interactions between block copolymers and single-walled carbon nanotubes in aqueous solutions: a small-angle neutron scattering study. Langmuir 27(2):751–759

    Google Scholar 

  80. Meyer F et al (2011) Poly(ethylene oxide)-b-poly(l-lactide) diblock copolymer/carbon nanotube-based nanocomposites: LiCl as supramolecular structure-directing agent. Biomacromolecules 12(11):4086–4094

    Google Scholar 

  81. Sollich P (1998) Rheological constitutive equation for a model of soft glassy materials. Phys Rev E 58(1):738–759

    ADS  Google Scholar 

  82. Sollich P et al (1997) Rheology of soft glassy materials. Phys Rev Lett 78(10):2020–2023

    ADS  Google Scholar 

  83. Surve M, Pryamitsyn V, Ganesan V (2006) Universality in structure and elasticity of polymer-nanoparticle gels. Phys Rev Lett 96(17):177805–177808

    ADS  Google Scholar 

  84. Salaniwal S, Kumar SK, Douglas JF (2002) Amorphous solidification in polymer-platelet nanocomposites. Phys Rev Lett 89(25):258301

    ADS  Google Scholar 

  85. Hobbie EK (2010) Shear rheology of carbon nanotube suspensions. Rheologica Acta 49(4):323–334

    Google Scholar 

  86. Krishanamoorti R, Chatterjee T (2012) Rheology and processing of polymer nanocomposites. In: Kontopoulou M (ed) Applied polymer rheology: polymeric fluids with industrial applications. Wiley, Toronto, pp 153–178

    Google Scholar 

  87. Geng HZ et al (2002) Fabrication and properties of composites of poly(ethylene oxide) and functionalized carbon nanotubes. Adv Mater 14(19):1387–1390

    Google Scholar 

  88. Song YS (2006) Rheological characterization of carbon nanotubes/poly(ethylene oxide) composites. Rheologica Acta 46(2):231–238

    Google Scholar 

  89. Fukuda H, Kawata K (1974) On young’s modulus of short fibre composites. Fiber Sci Technol 7:207–222

    Google Scholar 

  90. Halpin JC (1992) Primer on composite materials analysis. Technomic Publishing Company, Lancaster

    Google Scholar 

  91. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Google Scholar 

  92. Schaefer DW, Justice RS (2007) How nano are nanocomposites? Macromolecules 40(24):8501–8517

    ADS  Google Scholar 

  93. Trappe V, Weitz DA (2000) Scaling of the viscoelasticity of weakly attractive particles. Phys Rev Lett 85(2):449–452

    ADS  Google Scholar 

  94. Chatterjee T, Krishnamoorti R (2007) Dynamic consequences of the fractal network of nanotube-poly(ethylene oxide) nanocomposites. Phys Rev E 75(5):050403

    ADS  Google Scholar 

  95. Ferry JD (1980) Viscoelastic properties of polymer. Wiley, New York

    Google Scholar 

  96. Ninomiya K, Ferry JD (1959) Some approximate equations useful in the phenomenological treatment of linear viscoelastic data. J Colloid Sci 14:36

    Google Scholar 

  97. Ren JX, Krishnamoorti R (2003) Nonlinear viscoelastic properties of layered-silicate-based intercalated nanocomposites. Macromolecules 36(12):4443–4451

    ADS  Google Scholar 

  98. Berthier L (2003) Yield stress, heterogeneities and activated processes in soft glassy materials. J Phys-Condens Matter 15(11):S933–S943

    ADS  Google Scholar 

  99. Hobbie EK, Fry DJ (2006) Nonequilibrium phase diagram of sticky nanotube suspensions. Phys Rev Lett 97(3):036101–036104

    ADS  Google Scholar 

  100. Prasad V et al (2003) Universal features of the fluid to solid transition for attractive colloidal particles. Faraday Discuss 123:1–12

    ADS  Google Scholar 

  101. Chen M, Russel WB (1991) Characteristic of flocculated silica dispersions. J Colloid Interface Sci 141(2):564–577

    Google Scholar 

  102. Feng S et al (1984) Percolation on two-dimensional elastic networks with rotationally invariant bond-bending forces. Phys Rev B 30(9):5386–5389

    ADS  Google Scholar 

  103. Kantor Y, Webman I (1984) Elastic properties of random percolating systems. Phys Rev Lett 52(21):1891–1894

    ADS  Google Scholar 

  104. Arbabi S, Sahimi M (1993) Mechanics Of Disordered Solids. 1. Percolation On Elastic Networks With Central Forces. Phys Rev B 47(2):695–702

    ADS  Google Scholar 

  105. Sahimi M, Arbabi S (1993) Mechanics of disordered solids. 2. Percolation on elastic networks with bond-bending forces. Phys Rev B 47(2):703–712

    ADS  Google Scholar 

  106. Derooij R et al (1994) Elasticity of weakly aggregating polystyrene latex dispersions. Phys Rev E 49(4):3038–3049

    ADS  Google Scholar 

  107. Aoki Y et al (2001) Nonlinear stress relaxation of ABS polymers in the molten state. Macromolecules 34(9):3100–3107

    ADS  Google Scholar 

  108. Yurekli K et al (2001) Structure and dynamics of carbon black-filled elastomers. J Polym Sci B Polym Phys 39(2):256–275

    ADS  Google Scholar 

  109. Schmidt G, Nakatani AI, Han CC (2002) Rheology and flow-birefringence from viscoelastic polymer-clay solutions. Rheologica Acta 41(1–2):45–54

    Google Scholar 

  110. Zhang Q, Archer LA (2002) Poly(ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18(26):10435–10442

    Google Scholar 

  111. Goel V et al (2006) Viscoelastic properties of silica-grafted poly(styrene-acrylonitrile) nanocomposites. J Polym Sci B Polym Phys 44(14):2014–2023

    MathSciNet  ADS  Google Scholar 

  112. Larson RG (1999) The structure and rheology of complex fluids, 1st edn. Oxford University Press, New York

    Google Scholar 

  113. Chatterjee T, Krishnamoorti R (2008) Steady shear response of carbon nanotube networks dispersed in poly(ethylene oxide). Macromolecules 41(14):5333–5338

    ADS  Google Scholar 

  114. Whittle M, Dickinson E (1997) Stress overshoot in a model particle gel. J Chem Phys 107(23):10191–10200

    ADS  Google Scholar 

  115. Axford SDT (1996) Theoretical calculations on Smoluchowski kinetics: perikinetic reactions in highly aggregated systems. Proc R Soc Lond A Math Phys Eng Sci 452(1953):2355–2368

    MATH  ADS  Google Scholar 

  116. Axford SDT (1996) Non-preserving cluster size distributions in the initial stages of orthokinetic aggregation. J Chem Soc-Faraday Trans 92(13):1007–1015

    Google Scholar 

  117. Bhattacharyya AR et al (2003) Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 44(8):2373–2377

    Google Scholar 

  118. Haggenmueller R, Fischer JE, Winey KI (2006) Single wall carbon nanotube/polyethylene nanocomposites: nucleating and templating polyethylene crystallites. Macromolecules 39:2964–2971

    ADS  Google Scholar 

  119. Mitchell CA, Krishnamoorti R (2005) Non-isothermal crystallization of in situ polymerized poly(epsilon-caprolactone) functionalized-SWNT nanocomposites. Polymer 46(20):8796–8804

    Google Scholar 

  120. Chatterjee T et al (2007) Hierarchical polymer-nanotube composites. Adv Mater 19(22):3850–3853

    Google Scholar 

  121. Jin J, Song M, Pan F (2007) A DSC study of effect of carbon nanotubes on crystallisation behaviour of poly(ethylene oxide). Thermochimica Acta 456(1):25–31

    Google Scholar 

  122. Abraham TN et al (2008) Rheological and thermal properties of poly(ethylene oxide)/multiwall carbon nanotube composites. J Appl Polym Sci 110(4):2094–2101

    Google Scholar 

  123. Goh HW et al (2003) Crystallization and dynamic mechanical behavior of double-C-60-end-capped poly(ethylene oxide)/multi-walled carbon nanotube composites. Chem Phys Lett 379(3–4):236–241

    ADS  Google Scholar 

  124. Hoffman JD (1982) Role of reputation in the rate of crystallization of polyethylene fractions from the melt. Polymer 23(5):656–670

    Google Scholar 

  125. Hoffman JD (1983) Regime-Iii crystallization in melt-crystallized polymers – the variable cluster model of chain folding. Polymer 24(1):3–26

    Google Scholar 

  126. Hoffman JD (1986) Onset of chain folding in low-molecular-weight poly(ethylene oxide) fractions crystallized from the melt. Macromolecules 19(4):1124–1128

    ADS  Google Scholar 

  127. Hoffman JD, Miller RL (1988) Test of the reptation concept – crystal-growth rate as a function of molecular-weight in polyethylene crystallized from the melt. Macromolecules 21(10):3038–3051

    ADS  Google Scholar 

  128. Huang XD, Goh SH (2001) Crystallization of C-60-end-capped poly(ethylene oxide)s. Macromolecules 34(10):3302–3307

    ADS  Google Scholar 

  129. Takahashi Y, Tadokoro H (1973) Structural studies of polyethers, (-(CH2)m-O-)nX. Crystal Structure of Poly(ethylene oxide). Macromolecules 6:672–675

    ADS  Google Scholar 

  130. Zhu L et al (2000) Crystallization temperature-dependent crystal orientations within nanoscale confined lamellae of a self-assembled crystalline-amorphous diblock copolymer. J Am Chem Soc 122(25):5957–5967

    Google Scholar 

  131. Strobl GR, Schneider M (1980) Direct evaluation of the electron-density correlation-function of partially crystalline polymers. J Polym Sci B Polym Phys 18(6):1343–1359

    ADS  Google Scholar 

  132. Kuppa V, Manias E (2002) Computer simulation of PEO/layered-silicate nanocomposites: 2. Lithium dynamics in PEO/Li+ montmorillonite intercalates. Chem Mater 14(5):2171–2175

    Google Scholar 

  133. Strawhecker KE, Manias E (2003) Crystallization behavior of poly(ethylene oxide) in the presence of Na plus montmorillonite fillers. Chem Mater 15(4):844–849

    Google Scholar 

  134. Priftis D et al (2009) Surface modification of multiwalled carbon nanotubes with biocompatible polymers via ring opening and living anionic surface initiated polymerization. Kinetics and crystallization behavior. J Polym Sci A Polym Chem 47(17):4379–4390

    ADS  Google Scholar 

  135. Shieh YT et al (2005) Crystallization, melting and morphology of PEO in PEO/MWNT-g-PMMA blends. Polymer 46(24):10945–10951

    Google Scholar 

  136. Croce F et al (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394(6692):456–458

    ADS  Google Scholar 

  137. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77(2):183–197

    Google Scholar 

  138. Berthier C et al (1983) Microscopic investigation of ionic-conductivity in Alkali-metal salts poly(ethylene oxide) adducts. Solid State Ion 11(1):91–95

    MathSciNet  Google Scholar 

  139. Fullerton-Shirey SK, Maranas JK (2009) Effect of LiClO4 on the structure and mobility of PEO-based solid polymer electrolytes. Macromolecules 42(6):2142–2156

    ADS  Google Scholar 

  140. Yue R et al (2009) Suppression of crystallization in a plastic crystal electrolyte (SN/LiClO4) by a polymeric additive (polyethylene oxide) for battery applications. Polymer 50(5):1288–1296

    Google Scholar 

  141. Zhou D, Mei XG, Ouyang JY (2011) Ionic conductivity enhancement of polyethylene oxide-LiClO(4) electrolyte by adding functionalized multi-walled carbon nanotubes. J Phys Chem C 115(33):16688–16694

    Google Scholar 

  142. Lu CG et al (2004) Polymer electrolyte-gated carbon nanotube field-effect transistor. Nano Lett 4(4):623–627

    ADS  Google Scholar 

  143. Siddons GP et al (2004) Highly efficient gating and doping of carbon nanotubes with polymer electrolytes. Nano Lett 4(5):927–931

    ADS  Google Scholar 

  144. Ozel T et al (2005) Polymer electrolyte gating of carbon nanotube network transistors. Nano Lett 5(5):905–911

    MathSciNet  ADS  Google Scholar 

  145. Koh J et al (2008) Nanotube-based chemical and biomolecular sensors. J Mater Sci Technol 24(4):578–588

    Google Scholar 

  146. Huang ZM et al (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Google Scholar 

  147. Deitzel JM et al (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272

    Google Scholar 

  148. Deitzel JM et al (2001) Controlled deposition of electrospun poly(ethylene oxide) fibers. Polymer 42(19):8163–8170

    Google Scholar 

  149. MacDiarmid AG et al (2001) Electrostatically-generated nanofibers of electronic polymers. Synth Met 119(1–3):27–30

    Google Scholar 

  150. Shin MK et al (2008) Enhanced conductivity of aligned PANi/PEO/MWNT nanofibers by electrospinning. Sens Actuators B-Chem 134(1):122–126

    Google Scholar 

  151. Shin YM et al (2001) Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 42(25):9955–9967

    Google Scholar 

  152. Theron A, Zussman E, Yarin AL (2001) Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 12(3):384–390

    ADS  Google Scholar 

  153. Huang L, Apkarian RP, Chaikof EL (2001) High-resolution analysis of engineered type I collagen nanofibers by electron microscopy. Scanning 23(6):372–375

    Google Scholar 

  154. Huang L et al (2001) Engineered collagen-PEO nanofibers and fabrics. J Biomater Sci Polym Ed 12(9):979–993

    Google Scholar 

  155. Norris ID et al (2000) Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. Synth Met 114(2):109–114

    MathSciNet  Google Scholar 

  156. Dror Y et al (2003) Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir 19(17):7012–7020

    Google Scholar 

  157. Salalha W et al (2004) Single-walled carbon nanotubes embedded in oriented polymeric nanofibers by electrospinning. Langmuir 20(22):9852–9855

    Google Scholar 

  158. McCullen SD et al (2007) Morphological, electrical, and mechanical characterization of electrospun nanofiber mats containing multiwalled carbon nanotubes. Macromolecules 40(4):997–1003

    ADS  Google Scholar 

  159. Ojha SS et al (2008) Characterization of electrical and mechanical properties for coaxial nanofibers with poly(ethylene oxide) (PEO) core and multiwalled carbon nanotube/PEO sheath. Macromolecules 41(7):2509–2513

    ADS  Google Scholar 

  160. Liu Z et al (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2(2):85–120

    Google Scholar 

  161. Kam NWS, Liu Z, Dai HJ (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 127(36):12492–12493

    Google Scholar 

  162. Liu Z et al (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. Acs Nano 1(1):50–56

    Google Scholar 

  163. Prencipe G et al (2009) PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J Am Chem Soc 131(13):4783–4787

    Google Scholar 

  164. Lam CW et al (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36(3):189–217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramanan Krishnamoorti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krishnamoorti, R., Chatterjee, T. (2015). Carbon Nanotube-Based Poly(ethylene oxide) Nanocomposites. In: Kar, K., Pandey, J., Rana, S. (eds) Handbook of Polymer Nanocomposites. Processing, Performance and Application. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45229-1_49

Download citation

Publish with us

Policies and ethics