Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8081))

Abstract

Blind deconvolution involves the estimation of a sharp signal or image given only a blurry observation. Because this problem is fundamentally ill-posed, strong priors on both the sharp image and blur kernel are required to regularize the solution space. While this naturally leads to a standard MAP estimation framework, performance is compromised by unknown trade-off parameter settings, optimization heuristics, and convergence issues stemming from non-convexity and/or poor prior selections. To mitigate these problems, several authors have recently proposed substituting a variational Bayesian (VB) strategy that marginalizes over the high-dimensional image space leading to better estimates of the blur kernel. However, the underlying cost function now involves both integrals with no closed-form solution and complex, function-valued arguments, thus losing the transparency of MAP. To elucidate these issues, we demonstrate that the VB methodology can be recast as an unconventional MAP problem with a very particular penalty/prior that couples the image, blur kernel, and noise level in a principled way. This unique penalty has a number of useful characteristics pertaining to relative concavity, local minima avoidance, and scale-invariance that allow us to rigorously explain the success of VB including its existing implementational heuristics and approximations. It also provides strict criteria for choosing the optimal image prior that, perhaps counter-intuitively, need not reflect the statistics of natural scenes. In so doing we challenge the prevailing notion of why VB is successful for blind deconvolution while providing a transparent platform for introducing enhancements and extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babacan, S.D., Molina, R., Do, M.N., Katsaggelos, A.K.: Bayesian blind deconvolution with general sparse image priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 341–355. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  3. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: ICASSP (2008)

    Google Scholar 

  4. Cho, S., Lee, S.: Fast motion deblurring. In: ACM SIGGRAPH ASIA (2009)

    Google Scholar 

  5. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. In: ACM SIGGRAPH (2006)

    Google Scholar 

  6. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: CVPR (2011)

    Google Scholar 

  7. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. In: NIPS (2009)

    Google Scholar 

  8. Kundur, D., Hatzinakos, D.: Blind image deconvolution. IEEE Signal Process. Mag. 13(3), 43–64 (1996)

    Article  Google Scholar 

  9. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Deconvolution using natural image priors. Technical report, MIT (2007)

    Google Scholar 

  10. Levin, A., Weiss, Y., Durand, F., Freeman, W.: Understanding and evaluating blind deconvolution algorithms. In: CVPR (2009)

    Google Scholar 

  11. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding blind deconvolution algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2354–2367 (2011)

    Article  Google Scholar 

  12. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: CVPR (2011)

    Google Scholar 

  13. Miskin, J.W., MacKay, D.J.C.: Ensemble learning for blind image separation and deconvolution. In: Advances in Independent Component Analysis (2000)

    Google Scholar 

  14. Palmer, J.A.: Relatve convexity. Technical report, UCSD (2003)

    Google Scholar 

  15. Palmer, J.A., Wipf, D.P., Kreutz-Delgado, K., Rao, B.D.: Variational EM algorithms for non-Gaussian latent variable models. In: NIPS (2006)

    Google Scholar 

  16. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. In: ACM SIGGRAPH (2008)

    Google Scholar 

  17. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Wipf, D.P., Rao, B.D., Nagarajan, S.S.: Latent variable Bayesian models for promoting sparsity. IEEE Tran. Info. Theory 57(9), 6236–6255 (2011)

    Article  MathSciNet  Google Scholar 

  19. Wipf, D., Zhang, H.: Revisiting Bayesian blind deconvolution. MSRA Tech Report (March 2013)

    Google Scholar 

  20. Zhang, H., Wipf, D.: Non-uniform blind deblurring with a spatially adaptive prior. MSRA Tech Report (April 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wipf, D., Zhang, H. (2013). Analysis of Bayesian Blind Deconvolution. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, XC. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2013. Lecture Notes in Computer Science, vol 8081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40395-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40395-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40394-1

  • Online ISBN: 978-3-642-40395-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics