Skip to main content

Neuroimaging in Psychiatric Drug Development and Radioligand Development for New Targets

  • Chapter
  • First Online:
PET and SPECT in Psychiatry

Abstract

Positron emission tomography (PET) is an imaging modality used to measure physiological and biochemical markers in brain. Neuroreceptors, transporters, or enzymes are visualized and quantified with appropriate PET radioligands. In the development of drugs for treatment of psychiatric disorders, there are three major applications of PET. First, PET microdosing is used for pharmacokinetic evaluation. By injection of minute amount of radiolabeld drug, information about brain exposure can be obtained already at the early phase of drug development. Another application is receptor occupancy studies. Here, the competition between a drug and a PET radioligand binding is examined at the target sites. The competitive effect is useful to have when selecting the doses tested in further clinical trials. The third application is to use imaging biomarkers for diagnosis or efficacy. To widen the use of PET, the development of the PET radioligands for new targets is vital. Several criteria and characteristics such as binding affinity, selectivity and lipophilicity are important when selecting new PET radioligand candidates for targets in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arrowsmith J (2011a) Phase II failures: 2008–2010. Nat Rev Drug Discov 10:328–329

    Article  PubMed  CAS  Google Scholar 

  • Arrowsmith J (2011b) Phase III and submission failures: 2007–2010. Nat Rev Drug Discov 10:87

    Article  PubMed  CAS  Google Scholar 

  • Cselényi Z, Jönhagen ME, Forsberg A et al (2012) Clinical validation of 18F-AZD4694, an amyloid-β-specific PET radioligand. J Nucl Med 53:415–424

    Article  PubMed  CAS  Google Scholar 

  • Doorduin J, de Vries EF, Willemsen AT et al (2009) Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 50:1801–1807

    Article  PubMed  Google Scholar 

  • EMEA (2003) Positron paper on non-clinical safety studies to support clinical trials with a single microdose. CPMP/SWP/2599/02

    Google Scholar 

  • Farde L, Hall H, Ehrin E et al (1986) Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 231:258–261

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Wiesel FA, Halldin C et al (1988) Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry 45:71–76

    Article  PubMed  CAS  Google Scholar 

  • Farde L, Nordström AL, Wiesel FA et al (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 49:538–544

    Article  PubMed  CAS  Google Scholar 

  • Gelosa G, Brooks DJ (2012) The prognostic value of amyloid imaging. Eur J Nucl Med Mol Imaging 39:1207–1219

    Article  PubMed  CAS  Google Scholar 

  • Halldin C, Gulyás B, Farde L (2001) PET studies with carbon-11 radioligands in neuropsychopharmacological drug development. Curr Pharm Des 7:1907–1929

    Article  PubMed  CAS  Google Scholar 

  • Higuchi M, Maeda J, Ji B et al (2010) In-vivo visualization of key molecular processes involved in Alzheimer’s disease pathogenesis: insights from neuroimaging research in humans and rodent models. Biochim Biophys Acta 1802:373–388

    Article  PubMed  CAS  Google Scholar 

  • Hirvonen J, Kailajärvi M, Haltia T et al (2009) Assessment of MAO-B occupancy in the brain with PET and [11C]-L-deprenyl-D2: a dose-finding study with a novel MAO-B inhibitor, EVT 301. Clin Pharmacol Ther 85:506–512

    Article  PubMed  CAS  Google Scholar 

  • Jack CR Jr, Albert MS, Knopman DS et al (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:257–262

    Article  PubMed Central  PubMed  Google Scholar 

  • Kapur S, Zipursky R, Jones C et al (2000) Relationship between dopamine D2 occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 157:514–520

    Article  PubMed  CAS  Google Scholar 

  • Karlsson P, Farde L, Halldin C et al (1995) Oral administration of NNC 756—a placebo controlled PET study of D1-dopamine receptor occupancy and pharmacodynamics in man. Psychopharmacology (Berl) 119:1–8

    Article  CAS  Google Scholar 

  • Klunk WE, Engler H, Nordberg A et al (2004) Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 55:306–319

    Article  PubMed  CAS  Google Scholar 

  • Lappin G, Garner RC (2003) Big physics, small doses: the use of AMS and PET in human microdosing of development drugs. Nat Rev Drug Discov 2:233–240

    Article  PubMed  CAS  Google Scholar 

  • Mathis CA, Mason NS, Lopresti BJ et al (2012) Development of positron emission tomography β-amyloid plaque imaging agents. Semin Nucl Med 42:423–432

    Article  PubMed Central  PubMed  Google Scholar 

  • Meyer JH, Wilson AA, Sagrati S et al (2004) Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: an [11C]DASB positron emission tomography study. Am J Psychiatry 161:826–835

    Article  PubMed  Google Scholar 

  • Nordström AL, Farde L, Nyberg S et al (1995) D1, D2, and 5-HT2 receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients. Am J Psychiatry 152:1444–1449

    PubMed  Google Scholar 

  • Pierson ME, Andersson J, Nyberg S et al (2008) [11C]AZ10419369: a selective 5-HT1B receptor radioligand suitable for positron emission tomography (PET). Characterization in the primate brain. Neuroimage 41:1075–1085

    Article  PubMed  Google Scholar 

  • Rinne JO, Brooks DJ, Rossor MN et al (2010) 11C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 9:363–372

    Article  PubMed  CAS  Google Scholar 

  • Schou M, Varnäs K, Jucaite A et al (2013) Radiolabeling of the cannabinoid receptor agonist AZD1940 with carbon-11 and PET microdosing in non-human primate. Nucl Med Biol 40:410–413

    Article  PubMed  CAS  Google Scholar 

  • Sekine M, Arakawa R, Ito H et al (2010) Norepinephrine transporter occupancy by antidepressant in human brain using positron emission tomography with (S, S)-[18F]FMeNER-D2. Psychopharmacology (Berl) 210:331–336

    Article  CAS  Google Scholar 

  • Seneca N, Zoghbi SS, Liow JS et al (2009) Human brain imaging and radiation dosimetry of 11C-N-desmethyl-loperamide, a PET radiotracer to measure the function of P-glycoprotein. J Nucl Med 50:807–813

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Takano A, Arakawa R, Ito H et al (2010) Peripheral benzodiazepine receptors in patients with chronic schizophrenia: a PET study with [11C]DAA1106. Int J Neuropsychopharmacol 13:943–950

    Article  PubMed  CAS  Google Scholar 

  • Takano A, Nag S, Gulyás B et al (2011) NET occupancy by clomipramine and its active metabolite, desmethylclomipramine, in non-human primates in vivo. Psychopharmacology (Berl) 216:279–286

    Article  CAS  Google Scholar 

  • Taylor EM (2002) The impact of efflux transporters in the brain on the development of drugs for CNS disorders. Clin Pharmacokinet 41:81–92

    Article  PubMed  CAS  Google Scholar 

  • US FDA Code of Federal Regulations Title 21: food and Drugs Part110- Current good manufacturing practice in manufacturing. packing, or holding human food

    Google Scholar 

  • van Berckel BN, Bossong MG, Boellaard R et al (2008) Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 64:820–822

    Article  PubMed  Google Scholar 

  • Varnäs K, Nyberg S, Karlsson P et al (2011) Dose-dependent binding of AZD3783 to brain 5-HT1B receptors in non-human primates and human subjects: a positron emission tomography study with [11C]AZ10419369. Psychopharmacology (Berl) 213:533–545

    Article  CAS  Google Scholar 

  • Verbruggen A, Coenen HH, Deverre JR et al (2008) Guideline to regulations for radiopharmaceuticals in early phase clinical trials in the EU. Eur J Nucl Med Mol Imaging 35:2144–2151

    Article  PubMed  CAS  Google Scholar 

  • Yalow RS, Berson SA (1959) Assay of plasma insulin in human subjects by immunological methods. Nature 184:1648–1649

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Takano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takano, A., Halldin, C., Farde, L. (2014). Neuroimaging in Psychiatric Drug Development and Radioligand Development for New Targets. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., den Boer, J. (eds) PET and SPECT in Psychiatry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40384-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40384-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40383-5

  • Online ISBN: 978-3-642-40384-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics