Skip to main content

Numerical Trajectory Optimization for Airborne Wind Energy Systems Described by High Fidelity Aircraft Models

  • Chapter
  • First Online:
Airborne Wind Energy

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In order to study design tradeoffs in the development of an AWE system, it is useful to develop a code to optimize a trajectory for arbitrary objective function and constraints. We present a procedure for using direct collocation to optimize such a trajectory where a model is specified as a set of differential–algebraic equations. The six degree of freedom single-kite, pumping-mode AWE model developed in Chap. 10 is summarized, and two typical periodic optimal control problems are formulated and solved: maximum power and number of cycles per retraction. Finally, a procedure for optimally transitioning between two fixed trajectories is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson, J., A° kesson, J., Diehl, M.: CasADi – A symbolic package for automatic differentiation and optimal control. In: Forth, S., Hovland, P., Phipps, E., Utke, J., Walther, A. (eds.) Recent Advances in Algorithmic Differentiation, Vol. 87, Lecture Notes in Computational Science and Engineering, pp. 297–307. Springer, Berlin (2012). doi:

    Google Scholar 

  • Argatov, I., Silvennoinen, R.: Energy conversion efficiency of the pumping kite wind generator. Renewable Energy 35(5), 1052–1060 (2010). doi: 10.1016/j.renene.2009.09.006

    Google Scholar 

  • Biegler, L.: Nonlinear Programming. MOS-SIAM Series on Optimization. SIAM, Philadelphia (2010). doi: 10.1137/1.9780898719383

  • Fagiano, L., Milanese, M., Piga, D.: Optimization of airborne wind energy generators. International Journal of Robust and Nonlinear Control 22(18), 2055–2083 (2011). doi: 10.1002/rnc.1808

    Google Scholar 

  • Geebelen, K., Ahmad, H., Vukov, M., Gros, S., Swevers, J., Diehl, M.: An experimental test set-up for launch/recovery of an Airborne Wind Energy (AWE) system. In: Proceedings of the 2012 American Control Conference, pp. 5813–5818, Montr′eal, Canada, 27–29 June 2012. http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber = 6315033

  • Gros, S., Diehl, M.: A Relaxation Strategy for the Optimization of Airborne Wind Energy Systems. In: Proceedings of the European Control Conference (ECC13), Zurich, Switzerland, 17–19 July 2013

    Google Scholar 

  • Houska, B.: Robustness and Stability Optimization of Open-Loop Controlled Power Generating Kites. M.Sc.Thesis, Ruprecht-Karls-Universit¨at, Heidelberg, 2007. http://www.kuleuven.be/optec/files/Houska2007a.pdf

  • Houska, B., Diehl, M.: Optimal control for power generating kites. In: Proceedings of the 9th European Control Conference, pp. 3560–3567, Kos, Greece, 2–5 July 2007. http://www.kuleuven.be/optec/files/Houska2007.pdf

  • Houska, B., Diehl, M.: Optimal control of towing kites. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2693–2697, San Diego, CA, USA, 13–15 Dec 2006. doi: 10.1109/CDC.2006.377210

  • Jones, E., Oliphant, T., Peterson, P.: SciPy: Open source scientific tools for Python. http ://www.scipy.org/ (2001). Accessed 5 July 2013

  • Kameswaran, S., Biegler, L.: Simultaneous dynamic optimization strategies: Recent advances and challenges. Computers and Chemical Engineering 30(11–12), 1560–1575 (2006). doi: 10.1016/j.compchemeng.2006.05.034

  • Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980). doi: 10.2514/3. 48021

    Google Scholar 

  • Sternberg, J., Gros, S., Houska, B., Diehl, M.: Approximate Robust Optimal Control of Periodic Systems with Invariants and High-Index Differential Algebraic Systems. In: Proceedings of the 7th IFAC Symposium on Robust Control Design, pp. 678–683, Aalborg, Denmark, 20– 22 June 2012. doi: 10.3182/20120620-3-DK-2025.00089

  • Sternberg, J., Goit, J., Gros, S., Meyers, J., Diehl, M.: Robust and Stable Periodic Flight of Power Generating Kite Systems in a Turbulent Wind Flow Field. In: Proceedings of the 15th IFAC Workshop on Control Applications of Optimization, Rimini, Italy, 13–16 Sept 2012. doi: 10.3182/20120913-4-IT-4027.00009

  • W¨achter, A., Biegler, L.: On the Implementation of a Primal-Dual Interior Point Filter Line a Search Algorithm for Large-Scale Nonlinear Programming. Mathematical Programming 106(1), 25–57 (2006). doi: 10.1007/s10107-004-0559-y

    Google Scholar 

  • Williams, P., Lansdorp, B., Ockels, W.: Optimal Crosswind Towing and Power Generation with Tethered Kites. AIAA Journal of Guidance, Control, and Dynamics 31(1), 81–93 (2008). doi: 10.2514/1.30089

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Horn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horn, G., Gros, S., Diehl, M. (2013). Numerical Trajectory Optimization for Airborne Wind Energy Systems Described by High Fidelity Aircraft Models. In: Ahrens, U., Diehl, M., Schmehl, R. (eds) Airborne Wind Energy. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39965-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-39965-7_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-39964-0

  • Online ISBN: 978-3-642-39965-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics