Skip to main content

Extracting Evolving Pathologies via Spectral Clustering

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7917))

Abstract

A bottleneck in the analysis of longitudinal MR scans with white matter brain lesions is the temporally consistent segmentation of the pathology. We identify pathologies in 3D+t(ime) within a spectral graph clustering framework. Our clustering approach simultaneously segments and tracks the evolving lesions by identifying characteristic image patterns at each time-point and voxel correspondences across time-points. For each 3D image, our method constructs a graph where weights between nodes capture the likeliness of two voxels belonging to the same region. Based on these weights, we then establish rough correspondences between graph nodes at different time-points along estimated pathology evolution directions. We combine the graphs by aligning the weights to a reference time-point, thus integrating temporal information across the 3D images, and formulate the 3D+t segmentation problem as a binary partitioning of this graph. The resulting segmentation is very robust to local intensity fluctuations and yields better results than segmentations generated for each time-point.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anbeek, P., Vincken, K., Viergever, M.: Automated ms-lesion segmentation by k-nearest neighbor classification. In: Med. Image Comput. Comput. Assist. Interv. (July 2008)

    Google Scholar 

  2. Bernardis, E., Yu, S.X.: Robust segmentation by cutting across a stack of gamma transformed images. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds.) EMMCVPR 2009. LNCS, vol. 5681, pp. 249–260. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Bernardis, E., Yu, S.X.: Pop out many small structures from a very large microscopic image. Medical Image Analysis 15(5), 690–707 (2011)

    Article  Google Scholar 

  4. Fragkiadaki, K., Zhang, W., Shi, J., Bernardis, E.: Structural-flow trajectories for unravelling 3D tubular bundles. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 631–638. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Habas, P., Kim, K., Corbett-Detig, J., Rousseau, F., Glenn, O., Barkovich, A., Studholme, C.: A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation. NeuroImage 53(2), 460–470 (2010)

    Article  Google Scholar 

  6. Prastawa, M., Gerig, G.: Automatic ms lesion segmentation by outlier detection and information theoretic region partitioning. In: Med. Image Comput. Comput. Assist. Interv. (September 2008)

    Google Scholar 

  7. Prastawa, M., Gilmore, J., Lin, W., Gerig, G.: Automatic segmentation of MR images of the developing newborn brain. Medical Image Analysis 9(5), 457–466 (2005)

    Article  Google Scholar 

  8. Reuter, M., Fischl, B.: Avoiding asymmetry-induced bias in longitudinal image processing. NeuroImage 57(1), 19–21 (2011)

    Article  Google Scholar 

  9. Rey, D., Subsol, G., Delingette, H., Ayache, N.: Automatic detection and segmentation of evolving processes in 3D medical images: Application to multiple sclerosis. Medical Image Analysis 6(2), 163–179 (2002)

    Article  Google Scholar 

  10. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Analysis Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  11. Shiee, N., Bazin, P., Pham, D.: Multiple sclerosis lesion segmentation using statistical and topological atlases. In: Med. Image Comput. Comput. Assist. Interv. (October 2008)

    Google Scholar 

  12. Van Leemput, K., Maes, F., Vandermeulen, D., Colchester, A., Suetens, P.: Automated segmentation of multiple sclerosis lesions by model outlier detection. IEEE Transactions on Medical Imaging 20(8), 677–688 (2001)

    Article  Google Scholar 

  13. Weisenfeld, N., Warfield, S.: Automatic segmentation of newborn brain MRI. NeuroImage 47(2), 564–572 (2009)

    Article  Google Scholar 

  14. Welti, D., Gerig, G., Radü, E.-W., Kappos, L., Székely, G.: Spatio-temporal segmentation of active multiple sclerosis lesions in serial MRI data. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 438–445. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Xue, Z., Shen, D., Davatzikos, C.: CLASSIC: Consistent longitudinal alignment and segmentation for serial image computing. NeuroImage 30(2), 388–399 (2006)

    Article  Google Scholar 

  16. Yu, S.X., Shi, J.: Understanding popout through repulsion. In: IEEE Proc. Computer Vision and Pattern Recognition, pp. 752–757 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernardis, E., Pohl, K.M., Davatzikos, C. (2013). Extracting Evolving Pathologies via Spectral Clustering. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38868-2_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38867-5

  • Online ISBN: 978-3-642-38868-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics