Skip to main content

Structural Brain Network Constrained Neuroimaging Marker Identification for Predicting Cognitive Functions

  • Conference paper
Information Processing in Medical Imaging (IPMI 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7917))

Included in the following conference series:

Abstract

Neuroimaging markers have been widely used to predict the cognitive functions relevant to the progression of Alzheimer’s disease (AD). Most previous studies identify the imaging markers without considering the brain structural correlations between neuroimaging measures. However, many neuroimaging markers interrelate and work together to reveal the cognitive functions, such that these relevant markers should be selected together as the phenotypic markers. To solve this problem, in this paper, we propose a novel network constrained feature selection (NCFS) model to identify the neuroimaging markers guided by the structural brain network, which is constructed by the sparse representation method such that the interrelations between neuroimaging features are encoded into probabilities. Our new methods are evaluated by the MRI and AV45-PET data from ADNI-GO and ADNI-2 (Alzheimer’s Disease Neuroimaging Initiative). In all cognitive function prediction tasks, our new NCFS method outperforms other state-of-the-art regression approaches. Meanwhile, we show that the new method can select the correlated imaging markers, which are ignored by the competing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashburner, J., Friston, K.: Voxel-based morphometry–the methods. Neuroimage 11(6), 805–821 (2000)

    Article  Google Scholar 

  2. Chen, Z.J., He, Y., Rosa-Neto, P., Germann, J., Evans, A.C.: Revealing modular architecture of human brain structural networks by using cortical thickness from mri. Cerebral Cortex 18, 2374–2381 (2008)

    Article  Google Scholar 

  3. Hinrichs, C., Singh, V., et al.: Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. Neuroimage 48(1), 138–149 (2009)

    Article  Google Scholar 

  4. Jack Jr., C.R., Bernstein, M.A., Borowski, B.J., Gunter, J.L., Fox, N.C., Thompson, P.M., Schuff, N., Krueger, G., Killiany, R.J., Decarli, C.S., Dale, A.M., Carmichael, O.W., Tosun, D., Weiner, M.W.: Update on the magnetic resonance imaging core of the alzheimer’s disease neuroimaging initiative. Alzheimers Dement 6(3), 212–220 (2010)

    Article  Google Scholar 

  5. Jagust, W.J., Bandy, D., Chen, K., Foster, N.L., Landau, S.M., Mathis, C.A., Price, J.C., Reiman, E.M., Skovronsky, D., Koeppe, R.A.: The alzheimer’s disease neuroimaging initiative positron emission tomography core. Alzheimers Dement 6(3), 221–229 (2010)

    Article  Google Scholar 

  6. Khundrakpam, B.S., Reid, A., Brauer, J., et al.: Developmental changes in organization of structural brain networks. Cerebral Cortex (2012)

    Google Scholar 

  7. Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the Lasso. The Annals of Statistics 34(3), 1436–1462 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Risacher, S.L., Saykin, A.J., West, J.D., Shen, L., Firpi, H.A., McDonald, B.C.: Baseline mri predictors of conversion from mci to probable ad in the adni cohort. Curr. Alzheimer Res. 6(4), 347–361 (2009)

    Article  Google Scholar 

  9. Shen, L., Qi, Y., Kim, S., Nho, K., Wan, J., Risacher, S.L., Saykin, A.J., ADNI: Sparse bayesian learning for identifying imaging biomarkers in AD prediction. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 611–618. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Stonnington, C.M., Chu, C., et al.: Predicting clinical scores from magnetic resonance scans in alzheimer’s disease. Neuroimage 51(4), 1405–1413 (2010)

    Article  Google Scholar 

  11. Swaminathan, S., Shen, L., Risacher, S.L., Yoder, K.K., West, J.D., Kim, S., Nho, K., Foroud, T., Inlow, M., Potkin, S.G., Huentelman, M.J., Craig, D.W., Jagust, W.J., Koeppe, R.A., Mathis, C.A., Jack Jr., C.R., Weiner, M.W., Saykin, A.J.: Amyloid pathway-based candidate gene analysis of [(11)c]pib-pet in the Alzheimer’s disease neuroimaging initiative (adni) cohort. Brain Imaging Behav. 6(1), 1–15 (2012)

    Article  Google Scholar 

  12. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. Royal. Statist. Soc. B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Walhovd, K., Fjell, A., et al.: Multi-modal imaging predicts memory performance in normal aging and cognitive decline. Neurobiol. Aging 31(7), 1107–1121 (2010)

    Article  Google Scholar 

  14. Wang, H., Nie, F., Huang, H., Risacher, S.L., Ding, C., Saykin, A.J., Shen, L.: Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance. In: IEEE Conference on Computer Vision, pp. 557–562 (2011)

    Google Scholar 

  15. Wang, H., Nie, F., Huang, H., Risacher, S., Saykin, A.J., Shen, L., ADNI: Identifying AD-sensitive and cognition-relevant imaging biomarkers via joint classification and regression. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 115–123. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Wang, H., Nie, F., Huang, H., Risacher, S.L., Saykin, A.J., Shen, L., ADNI: Identifying disease sensitive and quantitative trait relevant biomarkers from multi-dimensional heterogeneous imaging genetics data via sparse multi-modal multi-task learning. In: 20th Annual International Conference on Intelligent Systems for Molecular Biology (ISMB), vol. 28, pp. i127–i136 (2012)

    Google Scholar 

  17. Wang, H., Nie, F., Huang, H., Yan, J., Kim, S., Nho, K., Risacher, S.L., Saykin, A.J., Shen, L.: From Phenotype to Genotype: An Association Study of Candidate Phenotypic Markers to Alzheimer’s Disease Relevant SNPs. Bioinformatics 28, i619–i625 (2012)

    Google Scholar 

  18. Wang, H., Nie, F., Huang, H., Yan, J., Kim, S., Risacher, S., Saykin, A., Shen, L.: High-Order Multi-Task Feature Learning to Identify Longitudinal Phenotypic Markers for Alzheimer Disease Progression Prediction. In: Advances in Neural Information Processing Systems, NIPS (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, D. et al. (2013). Structural Brain Network Constrained Neuroimaging Marker Identification for Predicting Cognitive Functions. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds) Information Processing in Medical Imaging. IPMI 2013. Lecture Notes in Computer Science, vol 7917. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38868-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38868-2_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38867-5

  • Online ISBN: 978-3-642-38868-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics