Skip to main content

Secure Semi-supervised Vector Quantization for Dissimilarity Data

  • Conference paper
  • 2637 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7902))

Abstract

The amount and complexity of data increase rapidly, however, due to time and cost constrains, only few of them are fully labeled. In this context non-vectorial relational data given by pairwise (dis-)similarities without explicit vectorial representation, like score- values in sequences alignments, are particularly challenging. Existing semi-supervised learning (SSL) algorithms focus on vectorial data given in Euclidean space. In this paper we extend a prototype-based classifier for dissimilarity data to non i.i.d. semi-supervised tasks. Using conformal prediction the ‘secure region’ of unlabeled data can be used to improve the trained model based on labeled data while adapting the model complexity to cover the ‘insecure region’ of labeled data. The proposed method is evaluated on some benchmarks from the SSL domain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chapelle, O., Schölkopf, B., Zien, A. (eds.): Semi-Supervised Learning. MIT Press, Cambridge (2006)

    Google Scholar 

  2. Boeckmann, B., et al.: The swiss-prot protein knowledgebase and its supplement trembl in 2003. Nucleic Acids Research 31, 365–370 (2003)

    Article  Google Scholar 

  3. Gisbrecht, A., Mokbel, B., Schleif, F.-M., Zhu, X., Hammer, B.: Linear time relational prototype based learning. J. of Neural Sys. 22(5), 72–84 (2012)

    Google Scholar 

  4. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press (1997)

    Google Scholar 

  5. Haasdonk, B., Bahlmann, C.: Learning with distance substitution kernels. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 220–227. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Hebiri, M.: Sparse conformal predictors. Statistics and Computing 20(2), 253–266 (2010)

    Article  MathSciNet  Google Scholar 

  7. Li, Y.-F., Zhou, Z.-H.: Towards making unlabeled data never hurt. In: Getoor, L., Scheffer, T. (eds.) ICML, pp. 1081–1088. Omnipress (2011)

    Google Scholar 

  8. Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recognition 39(10), 1852–1863 (2006)

    Article  MATH  Google Scholar 

  9. Rajadell, O., Garcia-Sevilla, P., Dinh, V.C., Duin, R.P.W.: Semi-supervised hyperspectral pixel classification using interactive labeling. In: 2011 3rd Workshop on WHISPERS, pp. 1–4 (June 2011)

    Google Scholar 

  10. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Touretzky, D.S., Mozer, M., Hasselmo, M.E. (eds.) NIPS, pp. 423–429. MIT Press (1995)

    Google Scholar 

  11. Schleif, F.-M., Zhu, X., Hammer, B.: A conformal classifier for dissimilarity data. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) AIAI 2012. IFIP AICT, vol. 381, pp. 234–243. Springer, Heidelberg (2012)

    Google Scholar 

  12. Singh, A., Nowak, R.D., Zhu, X.: Unlabeled data: Now it helps, now it doesn’t. In: Koller, D., Schuurmans, D., Bengio, Y., Bottou, L. (eds.) NIPS, pp. 1513–1520. Curran Associates, Inc. (2008)

    Google Scholar 

  13. Trosset, M.W., Priebe, C.E., Park, Y., Miller, M.I.: Semisupervised learning from dissimilarity data. Computational Statistics and Data Analysis 52(10), 4643–4657 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Vovk, V., Gammerman, A., Shafer, G.: Algorithmic Learning in a Random World. Springer, New York (2005)

    MATH  Google Scholar 

  15. Zhu, X., Goldberg, A.B.: Introduction to semi-supervised learning. Synthesis Lectures on Artif. Intell. and Machine Learning 3(1), 1–130 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhu, X., Schleif, FM., Hammer, B. (2013). Secure Semi-supervised Vector Quantization for Dissimilarity Data. In: Rojas, I., Joya, G., Gabestany, J. (eds) Advances in Computational Intelligence. IWANN 2013. Lecture Notes in Computer Science, vol 7902. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38679-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38679-4_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38678-7

  • Online ISBN: 978-3-642-38679-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics