Skip to main content

The H2STORE Project: Hydrogen Underground Storage – A Feasible Way in Storing Electrical Power in Geological Media?

  • Conference paper

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

Abstract

The large scale storage of energy is a great challenge arising from the planned transition from nuclear and CO2-emitting power generation to renewable energy production, by e.g. wind, solar, and biomass in Germany. The most promising option for storing large volumes of excess energy produced by such renewable sources is the usage of underground porous rock formations as energy reservoirs. Some new technologies are able to convert large amounts of electrical energy into a chemical form, for example into hydrogen by means of water electrolysis. Porous formations can potentially provide very high hydrogen storage capacities. Several methods have to be studied including high hydrogen diffusivity, the potential reactions of injected hydrogen, formation fluids, rock composition, and the storage complex.

Therefore, in August 2012 the collaborative project H2STORE ("hydrogen to store") started to investigate the feasibility of using burial clastic sediments of depleted gas reservoirs as well as recently used gas storage sites as potential hydrogen storage media. In Germany, such geological structures occur at various geographic sites and different geological strata. These deposits are characterized by different geological-tectonic evolution and mineralogical composition, mainly depending on palaeogeographic position and diagenetic burial evolution. Resulting specific sedimentary structures and mineral parageneses will strongly control formation fluid pathways and associated fluid-rock/mineral reactions. Accordingly, H2STORE will analyze sedimentological, petrophysical, mineralogical/geochemical, hydrochemical, and microbiological features of the different geological strata and the German locations to evaluate potential fluid-rock reactions induced by hydrogen injection. Such potential reactions will be experimentally induced in laboratory runs, as analogues for naturally occurring processes in deep seated reservoirs. Finally, rock data determined before and after these experiments will be used as major input parameters for numerical modelling of mineralogical and microbiological reactions. Such reactions are expected to have a strong affect on rock porosity-permeability evolution and therefore the characteristics of flow processes in reservoir and the barrier properties of sealing rocks.

The special topic of this study will be the modelling of hydrogen propagation in the subsurface reservoir formation supplemented by its mixing with the residual gases as well as the simulation of coupled bio-dynamic processes and of reactive transport in porous media. These numerical simulations will enable the transfer of experimental results from the laboratory runs to the field-scale and the formulation of the requirements for hydrogen storage in converted gas fields.

Thus, the major objectives of H2STORE are to obtain fundamental data on the behaviour of clastic sediments in the presence of formation fluids and injected hydrogen, its impact on petrophysical features and the development of the most realistic modelling for proposed and experimentally induced rock alteration as well as complex gas mixing processes in potential geological hydrogen reservoirs. Moreover these results will be used when discussing the possibility of "green" eco-methane generation by hydrogen and carbon dioxide interaction in the geological underground.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, M.M., Turner, A., Yardley, B.W.D.: Relation between the dissolution rate of single minerals and reservoir rocks in acidified pore waters. Appl. Geochem. 26, 1289–1301 (2011)

    Article  Google Scholar 

  2. Beck, H.P., Franz, O.T.: Energy storage in abandoned mines – A method to stabilize the German power grid. In: Hou, M.Z., Xie, H., Yoon, J.S. (eds.) Underground Storage of CO2 and Energy, pp. 261–269. CRC Press, Taylor & Francis Group, Boca Raton-London-New York-Leiden (2010)

    Chapter  Google Scholar 

  3. Bottig, M.: Diagenetische Umwandlungen in Sandsteinen der gasgesättigten, der sekundär verwässerten, der Wasser-, und der Übergangszone des Erdgas-Speichers Haidach in der Molasse Zone, Österreich. Diploma Thesis, Universität Wien/ Österreich, p. 74 (2008)

    Google Scholar 

  4. Brandt, F., Bosbach, D., Krawczyk-Bärsch, E., Arnold, T., Bernhard, G.: Chlorite dissolution in the acid pH-range: A combined microscopic and macroscopic approach. Geochim. Cosmochim. Acta 67, 1451–1461 (2003)

    Article  Google Scholar 

  5. Brockmann, B., Donadei, S., Crotogino, F.: Energy storage in salt caverns – Renewable energies in the spotlight. In: Hou, M.Z., Xie, H., Yoon, J.S. (eds.) Underground Storage of CO2 and Energy, pp. 271–277. CRC Press, Taylor & Francis Group, Boca Raton-London-New York-Leiden (2010)

    Chapter  Google Scholar 

  6. Cavallo, A.: Controllable and affordable utility-scale electricity from intermittent wind resources and compressed air energy storage (CAES). Energy 32, 120–127 (2007)

    Article  Google Scholar 

  7. Czurda, K.: Clay liners and waste disposal. In: Bergaya, F., Theng, B.K.G., Lagaly, G. (eds.) Handbook of Clay Science, Developments in Clay Science, vol. 1, pp. 693–701 (2006)

    Google Scholar 

  8. De Lucia, M., Kühn, M.: TV III.2.2.2: Geochemical modeling, Pitzer databases and upscaling of chemical reactions. In: Kolditz (ed.) CLEAN Progress Report TV III.2, Report Period: 01/2009—12/2009 (2010)

    Google Scholar 

  9. Demouchy, S., Jacobsen, S.D., Gaillard, F., Stern, C.R.: Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology 34, 429–432 (2006)

    Article  Google Scholar 

  10. Ehrenberg, S.N.: Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstones: Discussion; Compaction and porosity evolution of Pliocene sandstones, Ventura Basin, California: Discussion. Amer. Ass. of Petrol Geol. Bull. 73, 1274–1276 (1989)

    Google Scholar 

  11. Fischer, S., Liebscher, A., Wandrey, M., the CO2SINK Group: CO2–brine–rock interaction — First results of long-term exposure experiments at insitu P–Tconditions of the Ketzin CO2 reservoir. Chemie der Erde (Geochemistry) 70, 155–164 (2010)

    Article  Google Scholar 

  12. Flaathen, T.K., Gislason, S.R., Oelkers, E.H., Sveinbjörnsdóttir, A.E.: Chemical evolution of the Mt. Hekla, Iceland, groundwaters: A natural analogue for CO2 sequestration in basaltic rocks. Appl. Geochem. 24, 463–474 (2009)

    Article  Google Scholar 

  13. Foh, S., Novil, M., Rockar, E., Randolph, P.: Underground hydrogen storage. Final report, Brookhaven National Laboratory, Upton - New York, p. 145 (1979)

    Google Scholar 

  14. Folk, R.L.: Petrology of sedimentary rocks, p. 190. Hemphill Publishing Company, Austin (1968)

    Google Scholar 

  15. Giardini, A.A., Salotti, C.A.: Kinetics and relations in the calcite-hydrogen reaction and relations in the dolomite-hydrogen and siderite-hydrogen systems. Am. Mineral 54, 1151–1172 (1969)

    Google Scholar 

  16. Giese, H.O., Schuldt, J.: Speicherung von Windenergie im Untergrund. AGAFE – Mitteilungen 24(1), 2–6 (2005)

    Google Scholar 

  17. Gil, A., Trujillano, R., Vicente, M.A., Korili, S.A.: Hydrogen adsorption by microporous materials based on alumina-pillared clays. Int. J. of Hydrogen Energy 34, 8611–8615 (2009)

    Article  Google Scholar 

  18. Gillespie, D.: A general method for numerically simulating the stochastic time revolution of coupled chemical reactions. J. of Computational Physics 2, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  19. Gillhaus, A.: Natural gas storage in salt caverns – Summary of worldwide projects and consequences of varying storage objectives and salt formations. In: Hou, M.Z., Xie, H., Yoon, J.S. (eds.) Underground Storage of CO2 and Energy, pp. 191–197. CRC Press, Taylor & Francis Group, Boca Raton-London-New York-Leiden (2010)

    Chapter  Google Scholar 

  20. Gunter, W.D., Bachu, S., Benson, S.: The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. In: Baines, S.J., Worden, R.H. (eds.) Geological Storage of Carbon Dioxide, vol. 233, pp. 129–145. Geological Society, Special Publications, London (2004)

    Google Scholar 

  21. Heinrich, E.W., Salotti, C.A., Giardini, A.A.: Hydrogen-mineral reactions and their application to the removal of iron from spodume. Energy 3, 273–279 (1978)

    Article  Google Scholar 

  22. Kinnaman, F.S., Valentine, D.L., Tyler, S.C.: Carbon and hydrogen isotope fractionation associated with the aerobic microbial oxidation of methane, ethane, propane and butane. Geochim. Cosmochim. Acta 71, 271–283 (2007)

    Article  Google Scholar 

  23. Kolditz, O., Shao, H. (eds.): OpenGeoSys-BenchmarkBook, v. 5.0.04 (2011), available through, http://www.opengeosys.net

  24. Lord, A.S.: Overview of geologic storage of natural gas with an emphasis on assessing the feasibility of storing hydrogen. SANDIA Report SAND2009-5878, Sandia National Laboratories, p. 28 (2009)

    Google Scholar 

  25. Lüders, V., Plessen, B., Romer, R.L., Weise, S.M., Banks, D.A., Hoth, P., Dulski, P., Schettler, G.: Chemistry and isotopic composition of Rotliegend and Upper Carboniferous formation waters from the North German Basin. Chem. Geol. 276, 198–208 (2010)

    Article  Google Scholar 

  26. Lund, H., Salgi, G.: The role of compressed air energy storage (CAES) in future sustainable energy systems. Energy Conversion and Management 50, 1172–1179 (2009)

    Article  Google Scholar 

  27. McBride, E.F.: A classification of common sandstones. J. Sediment Petrol 33, 664–669 (1963)

    Google Scholar 

  28. Morozova, D., Alawi, M., Shaheed, M., Krüger, M., Kock, D., Würdemann, H.: The influence of microbial activity on rock fluid interaction: baseline characterization of deep microbial biosphere for Enhanced Gas Recovery in the Altmark natural gas reservoir. Energy Procedia 4, 4633–4640 (2011a)

    Article  Google Scholar 

  29. Morozova, D., Zettlitzer, M., Let, D., Würdemann, H., CO2SINK group: CO2SINK group Monitoring of the microbial community composition in deep subsurface saline aquifers during CO2 storage in Ketzin, Germany. Energy Procedia 4, 4362–4370 (2011b)

    Article  Google Scholar 

  30. Reinhold, K., Müller, C., Riesenberg, C.: Informationssystem Speichergesteine für den Standort Deutschland - Abschlussbericht. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Berlin-Hannover, p. 134 (2011)

    Google Scholar 

  31. Ogden, J.M.: Prospects for building a hydrogen energy infrastructure. Annu. Rev. Energy Environ. 24, 227–279 (1999)

    Article  Google Scholar 

  32. Panfilov, M.: Underground Storage of Hydrogen: In Situ Self-Organisation and Methane Generation. Transport in Porous Media 85, 841–865 (2010)

    Article  Google Scholar 

  33. Parkhurst, D., Appelo, C.: Users guide to Phreeqc (version 2). Technical Report, U.S. Geological Survey, Water-Resources Investigations Report 99. Denver, Colorado (1999)

    Google Scholar 

  34. Pudlo, D., Reitenbach, V., Albrecht, D., Ganzer, L., Gernert, U., Wienand, J., Kohlhepp, B., Gaupp, R.: The impact of diagenetic fluid-rock reactions on Rotliegend sandstone composition and petrophysical properties (Altmark area, central Germany). Environ. Earth Sci. 67, 369–384 (2012)

    Article  Google Scholar 

  35. Pukazhselvan, D., Kumar, V., Singh, S.K.: High capacity hydrogen storage: basic aspects, new developments and milestones. Nano Energy 1, 566–589 (2012)

    Article  Google Scholar 

  36. Purwin, H., Stalder, R., Skogby, H.: Hydrogen incorporation in Fe- and Na-doped diopsides. Eur. J. Mineral 21, 691–704 (2009)

    Article  Google Scholar 

  37. Sedlacek, R.: Untertage-Gasspeicherung in Deutschland. Erdöl Erdgas Kohle 125(11), 412–426 (2009)

    Google Scholar 

  38. Sedlacek, R.: Untertage-Erdgasspeicherung in Deutschland. Erdöl Erdgas Kohle 127(11), 414–424 (2011)

    Google Scholar 

  39. Sørensen, B.: Underground hydrogen storage in geological formations, and comparison with other storage solutions. In: Proc. of Hydrogen Power Theoretical and Engineering Int. Symp., Merida, Mexico (2007)

    Google Scholar 

  40. Tunega, D., Haberhauer, G., Gerzabek, M.H., Lischka, H.: Theoretical study of adsorption sites on the (001) surfaces of 1:1 clay minerals. Langmuir 18, 139–147 (2002)

    Article  Google Scholar 

  41. Velde, B., Meunier, A.: The Origin of Clay Minerals in Soils and Weathered Rocks, p. 406. Springer, Heidelberg (2008)

    Book  Google Scholar 

  42. Vorhies, J.S., Gaines, R.R.: Microbial dissolution of clay minerals as a source of iron and silica in marine sediments. Nature - Geoscience 2009(2), 221–225 (2009)

    Article  Google Scholar 

  43. Xu, T., Spycher, N., Sonnenthal, E., Zhang, G., Zheng, L., Pruess, K.: TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions. Computers and Geosciences 37, 763–774 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pudlo, D. et al. (2013). The H2STORE Project: Hydrogen Underground Storage – A Feasible Way in Storing Electrical Power in Geological Media?. In: Hou, M., Xie, H., Were, P. (eds) Clean Energy Systems in the Subsurface: Production, Storage and Conversion. Springer Series in Geomechanics and Geoengineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37849-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37849-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37848-5

  • Online ISBN: 978-3-642-37849-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics