Skip to main content

Generalized Decomposition

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7811))

Included in the following conference series:

Abstract

Decomposition-based algorithms seem promising for many-objective optimization problems. However, the issue of selecting a set of weighting vectors for more than two objectives is still unresolved and ad-hoc methods are predominantly used. In the present work, a novel concept is introduced which we call generalized decomposition. Generalized decomposition enables the analyst to adapt the generated distribution of Pareto optimal points, according to the preferences of the decision maker. Also it is shown that generalized decomposition unifies the three performance objectives in multi-objective optimization algorithms to only one, that of convergence to the Pareto front.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miettinen, K.: Nonlinear Multiobjective Optimization, vol. 12. Springer (1999)

    Google Scholar 

  2. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary Many-Objective Optimization: A Short Review. In: IEEE Congress on Evolutionary Computation, pp. 2419–2426 (2008)

    Google Scholar 

  3. Takahashi, R., Carrano, E., Wanner, E.: On a Stochastic Differential Equation Approach for Multiobjective Optimization up to Pareto-Criticality. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 61–75. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  4. Jaszkiewicz, A.: On the Performance of Multiple-Objective Genetic Local Search on the 0/1 Knapsack Problem - A comparative Experiment. IEEE Transactions on Evolutionary Computation 6, 402–412 (2002)

    Article  Google Scholar 

  5. Hughes, E.: Multiple Single Objective Pareto Sampling. In: Congress on Evolutionary Computation, vol. 4, pp. 2678–2684. IEEE (2003)

    Google Scholar 

  6. Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Transactions on Evolutionary Computation 11, 712–731 (2007)

    Article  Google Scholar 

  7. Edgeworth, F.: Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences. Number 10. CK Paul (1881)

    Google Scholar 

  8. Pareto, V.: Cours D’Économie Politique (1896)

    Google Scholar 

  9. Miettinen, K., Mäkelä, M.: On Scalarizing Functions in Multiobjective Optimization. OR Spectrum 24, 193–213 (2002)

    Article  MATH  Google Scholar 

  10. Das, I., Dennis, J.: Normal-Boundary Intersection: An Alternate Method for Generating Pareto Optimal Points in Multicriteria Optimization Problems. Technical report, DTIC Document (1996)

    Google Scholar 

  11. Vira, C., Haimes, Y.: Multiobjective Decision Making: Theory and Methodology, vol. 8. North-Holland (1983)

    Google Scholar 

  12. Jiang, S., Cai, Z., Zhang, J., Ong, Y.S.: Multiobjective Optimization by Decomposition with Pareto-Adaptive Weight Vectors. In: International Conference on Natural Computation, vol. 3, pp. 1260–1264 (2011)

    Google Scholar 

  13. Gu, F., Liu, H., Tan, K.: A Multiobjective Evolutionary Algorithm Using Dynamic Weight Method. International Journal of innovative Computing, Information and Control 8, 3677–3688 (2012)

    Google Scholar 

  14. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

    Google Scholar 

  15. Mattingley, J., Boyd, S.: CVXGEN: A Code Generator for Embedded Convex Optimization. Optimization and Engineering, 1–27 (2012)

    Google Scholar 

  16. Grant, M., Boyd, S.: CVX: Matlab Software for Disciplined Convex Programming (2008)

    Google Scholar 

  17. Hardin, D., Saff, E.: Discretizing Manifolds via Minimum Energy Points. Notices of the AMS 51, 1186–1194 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multi-Objective Optimization Test Problems. In: Congress on Evolutionary Computation, vol. 1, pp. 825–830 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giagkiozis, I., Purshouse, R.C., Fleming, P.J. (2013). Generalized Decomposition. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds) Evolutionary Multi-Criterion Optimization. EMO 2013. Lecture Notes in Computer Science, vol 7811. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37140-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37140-0_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37139-4

  • Online ISBN: 978-3-642-37140-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics