Skip to main content

Gait Recognition Based on Partitioned Weighting Gait Energy Image

  • Conference paper
Intelligent Science and Intelligent Data Engineering (IScIDE 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7751))

Abstract

Gait energy image (GEI) has been proved to be an effective gait feature representation method. But it’s sensitive to the change of clothing and carrying conditions. We propose a novel gait recognition method called partitioned weighting gait energy image (PWGEI) to deal with these problems. A human body is divided into four parts and different weights are given to different parts to get the PWGEI from GEI. Two different weighting ways are conducted and a fusion of classifiers is adopted. We test our method on the USF database. Our average recognition rate is 48.87%, which is higher than GEI by 6% and higher than gait flow image (GFI) by 5.79%. The experimental results prove the effectiveness of our proposed PWGEI method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dockstader, S., Berg, M., Tekalp, A.: Stochastic kinematic modeling and feature extraction for gait analysis. IEEE Transactions on Image Processing 12(8), 962–976 (2003)

    Article  MathSciNet  Google Scholar 

  2. Singh, J., Jain, S.: Person identification based on gait using dynamic body parameters. In: Trendz in Information Sciences Computing (TISC), pp. 248–252 (December 2010)

    Google Scholar 

  3. Wu, J.: A novel approach for discrimination of human gait using kernel learning algorithm. In: 2010 Sixth International Conference on Natural Computation (ICNC), vol. 6, pp. 3253–3256 (August 2010)

    Google Scholar 

  4. Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(2), 316–322 (2006)

    Article  Google Scholar 

  5. Lam, T.H., Cheung, K., Liu, J.N.: Gait flow image: A silhouette-based gait representation for human identification. Pattern Recognition 44(4), 973–987 (2011)

    Article  MATH  Google Scholar 

  6. Yang, X., Zhou, Y., Zhang, T., Shu, G., Yang, J.: Gait recognition based on dynamic region analysis. Signal Processing 88(9), 2350–2356 (2008)

    Article  MATH  Google Scholar 

  7. Chen, C., Liang, J., Zhao, H., Hu, H., Tian, J.: Frame difference energy image for gait recognition with incomplete silhouettes. Pattern Recognition Letters 30(11), 977–984 (2009)

    Article  Google Scholar 

  8. Zhang, E.H., Ma, H.B., Lu, J.W., Chen, Y.J.: Gait recognition using dynamic gait energy and pca+lpp method. In: 2009 International Conference on Machine Learning and Cybernetics, vol. 1, pp. 50–53 (July 2009)

    Google Scholar 

  9. Zhang, E., Zhao, Y., Xiong, W.: Active energy image plus 2dlpp for gait recognition. Signal Processing 90(7), 2295–2302 (2010)

    Article  MATH  Google Scholar 

  10. Lee, S., Liu, Y., Collins, R.: Shape variation-based frieze pattern for robust gait recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8 (June 2007)

    Google Scholar 

  11. Lam, T.H.W., Lee, R.S.T., Zhang, D.: Human gait recognition by the fusion of motion and static spatio-temporal templates. Pattern Recognition, 2563–2573 (2007)

    Google Scholar 

  12. Huang, P.S., Harris, C.J., Nixon, M.S.: Recognising humans by gait via parametric canonical space. AI in Engineering, 359–366 (1999)

    Google Scholar 

  13. Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The humanid gait challenge problem: Data sets, performance, and analysis. IEEE Trans. Pattern Anal. Mach. Intell., 162–177 (2005)

    Google Scholar 

  14. Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: ICPR (4) 2006, pp. 441–444 (2006)

    Google Scholar 

  15. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell., 1505–1518 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, X., Wang, D., Chen, Y. (2013). Gait Recognition Based on Partitioned Weighting Gait Energy Image. In: Yang, J., Fang, F., Sun, C. (eds) Intelligent Science and Intelligent Data Engineering. IScIDE 2012. Lecture Notes in Computer Science, vol 7751. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36669-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36669-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36668-0

  • Online ISBN: 978-3-642-36669-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics