Skip to main content

Ergodicity Results for the Stochastic Navier–Stokes Equations: An Introduction

  • Chapter
  • First Online:
Topics in Mathematical Fluid Mechanics

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2073))

Abstract

The theory of the stochastic Navier–Stokes equations (SNSE) has known a lot of important advances those last 20 years. Existence and uniqueness have been studied in various articles (see for instance [1, 35, 911, 13, 15, 21, 28, 30, 49, 51, 52, 66, 67]) and this part of the theory is well understood. Most of the deterministic results have been generalized to the stochastic context and it is now known that as in the deterministic case the SNSE has unique global strong solutions in dimension two. In dimension three, there exist global weak solutions and uniqueness is also a completely open problem in the stochastic case. The solutions in dimension three are weak in the sense of the theory of partial differential equations and in the sense of stochastic equations: the solutions are not smooth in space and they satisfy the SNSE only in the sense of the martingale problem. In Sect. 2 of these notes, we recall briefly these results and give the ideas of the proof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As is usual when deriving a priori estimates, many computations done in these notes are formal. Galerkin approximations can be used to prove rigorously that the final inequality is true.

  2. 2.

    Again, the following computation is formal and should be justified by Galerkin approximation for instance. In Sect. 4, we give details on the link between the Kolmogorov equation and the transition semi-group.

References

  1. S. Albeverio, A.B. Cruzeiro, Global flow and invariant (Gibbs) measure for Euler and Navier–Stokes two dimensional fluids. Comm. Math. Phys. 129, 431–444

    Google Scholar 

  2. S. Albeverio, A. Debussche, L. Xu, Exponential mixing of the 3D stochastic Navier–Stokes equations driven by mildly degenerate noises. Preprint (2010)

    Google Scholar 

  3. A. Bensoussan, Stochastic Navier–Stokes equations. Acta Appl. Math. 38, 267–304 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bensoussan, J. Frehse, Local solutions for stochastic Navier–Stokes equations. M2AN Math. Model. Numer. Anal. 34(2), 241–273 (2000)

    Google Scholar 

  5. A. Bensoussan, R. Temam. Équations stochastiques du type Navier–Stokes. J. Funct. Anal. 13, 195–222 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. J.M. Bismut, Large Deviations and the Malliavin Calculus (Birkhäuser, Boston, 1984)

    MATH  Google Scholar 

  7. Z. Brzezniak, M. Capinski, F. Flandoli, Stochastic Navier–Stokes equations with multiplicative noise. Stoch. Anal. Appl. 10(5), 523–532 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Bricmont, A. Kupiainen, R. Lefevere, Exponential mixing for the 2D Navier–Stokes dynamics. Comm. Math. Phys. 230(1), 87–132 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Capinski, D. Gatarek, Stochastic equations in Hilbert space with application to Navier-Stokes equations in any dimension. J. Funct. Anal. 126(1), 26–35 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. I. Chueshov, S.B. Kuksin, On the random kick-forced 3D Navier–Stokes equations in a thin domain. Arch. Ration. Mech. Anal. 188(1), 117–153 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Chueshov, S.B. Kuksin, Stochastic 3D Navier-Stokes equations in a thin domain and its α-approximation. Preprint (2007)

    Google Scholar 

  12. P. Constantin, C. Foias, Navier–Stokes equations, Chicago Lectures in Mathematics (University of Chicago Press, ix, 1988)

    Google Scholar 

  13. A.B. Cruzeiro, Solutions et mesures invariantes pour des équations d d’évolution stochastiques du type Navier–Stokes. Expo. Math. 7(1), 73–82 (1989)

    MathSciNet  MATH  Google Scholar 

  14. G. Da Prato, A. Debussche, Dynamic programming for the stochastic Navier–Stokes equations. Math. Model. Numer. Anal. 34, 459–475 (2000)

    Article  MATH  Google Scholar 

  15. G. Da Prato, A. Debussche, Two-dimensional Navier–Stokes equations driven by a space-time white noise. J. Funct. Anal. 196(1), 180–210 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Da Prato, A. Debussche, Ergodicity for the 3D stochastic Navier–Stokes equations. J. Math. Pures Appl. 82, 877–947 (2003)

    MathSciNet  MATH  Google Scholar 

  17. G. Da Prato, A. Debussche, On the martingale probem associated to the 2D and 3D Stochastic Navier–Stokes equations. To appear in Rendiconti Lincei

    Google Scholar 

  18. G. Da Prato, J. Zabczyk, Encyclopedia of mathematics and its applications, in Stochastic Equations in Infinite Dimensions (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  19. G. Da Prato, J. Zabczyk, in Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture Notes, vol 229 (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  20. G. Da Prato, J. Zabczyk, Differentiability of the Feynman-Kac semi-group and a control application. Rend. Mat. Accad. Lincei 8, 183–188 (1997)

    MATH  Google Scholar 

  21. A. Debussche, The 2D-Navier-Stokes equations perturbed by a delta correlated noise. in Proceeding of the Swansea 2002 Workshop ”Probabilistic Methods in Fluid ” (World Scientific, 2003), pp. 115–129

    Google Scholar 

  22. A. Debussche, N. Glatt-Holtz, R. Temam, Local martingale and pathwise solutions for an abstract fluids model. Phys. D To appear

    Google Scholar 

  23. A. Debussche, C. Odasso, Ergodicity for a weakly damped stochastic Nonlinear Schrödinger equation. J. Evol. Equ. 5(3), 317–356 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Debussche, C. Odasso, Markov solutions for the 3D stochastic Navier–Stokes equations with state dependent noise. J. Evol. Equ. 6(2) 305–324 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. K.D. Elworthy, X.-M. Li, Formulae for the derivatives of heat semi-groups. J. Funct. Anal. 125(1), 252–286 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Flandoli, Irreducibilty of the 3-D Stochastic Navier–Stokes Equation. J. Funct. Anal. 149, 160–177 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Flandoli, An introduction to 3D stochastic fluid dynamics. in SPDE in Hydrodynamic: Recent Progress and Prospects, vol 1942. Lecture Notes in Mathematics, (Springer, Berlin/Heidelberg, 2008) pp. 51–150

    Google Scholar 

  28. F. Flandoli, D. Gatarek, Martingale and stationary solutions for stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 102, 367–391 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. F. Flandoli, B. Maslowski, Ergodicity of the 2D Navier–Stokes equations under random perturbations. Comm. Math. Phys. 172(1), 119–141 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Flandoli, M. Romito, Partial regularity for the stochastic Navier–Stokes equations. Trans. Am. Math. Soc. 354(6), 2207–2224 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Flandoli, M. Romito, Regularity of transition semi-groups associated to a 3D stochastic Navier–Stokes equation. in Stochastic Differential Equations: Theory and Application. Interdisciplinary Mathematical Sciences, vol. 2, ed. by P.H. Baxendale, S.V. Lototski (World Scientific, Singapore, 2007)

    Google Scholar 

  32. F. Flandoli, M. Romito, Markov selections for the 3D stochastic Navier–Stokes equation. Probab. Theory Relat. Fields 140(3-4), 407–458 (2008)

    MathSciNet  MATH  Google Scholar 

  33. B. Goldys, B. Maslowski, Exponential ergodicity for stochastic Burgers and 2D Navier–Stokes equations. J. Funct. Anal. 226(1), 230–255 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. I. Gyongy, N. Krylov, Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Relat. Fields 105, 143–158 (1996)

    Article  MathSciNet  Google Scholar 

  35. M. Hairer, Exponential mixing properties of stochastic PDEs through asymptotic coupling. Probab. Theory Relat. Fields 124(3) 345–380 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Hairer, J.C. Mattingly, Ergodicity of the 2D Navier–Stokes equations with degenerate stochastic forcing. Ann. Math. 164(3), (2006)

    Google Scholar 

  37. M. Hairer, J.C. Mattingly. Spectral gaps in Wasserstein distances and the 2D stochastic Navier–Stokes equations. Ann. Probab. 36(6), 2050–2091 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Hairer, J.C. Mattingly, A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs. EJP 16(23), 658–738 (2011)

    MathSciNet  MATH  Google Scholar 

  39. S.B. Kuksin, Randomly Forced Nonlinear PDEs and Statistical Hydrodynamics in 2 Space Dimensions (Europear Mathematical Society Publishing House, 2006)

    Google Scholar 

  40. S. Kuksin, A. Shirikyan, Stochastic dissipative PDEs and Gibbs measures. Comm. Math. Phys. 213(2), 291–330 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. S. Kuksin, A. Shirikyan, Ergodicity for the randomly forced 2D Navier–Stokes equations. Math. Phys. Anal. Geom. 4(2), 147–195 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Kuksin, A. Shirikyan, A coupling approach to randomly forced nonlinear PDEs I. Comm. Math. Phys. 221, 351–366 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Kuksin, A. Piatnitski, A. Shirikyan, A coupling approach to randomly forced randomly forced PDE’s II. Comm. Math. Phys. 230(1), 81–85 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. S. Kuksin, A. Shirikyan, Coupling approach to white-forced nonlinear PDEs. J. Math. Pures Appl. 81(6), 567–602 (2002)

    MathSciNet  MATH  Google Scholar 

  45. J.M. Lasry, P.L. Lions, A remark on regularization in Hilbert spaces. Isr. J. Math. 55, 257–266 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  46. J.C. Mattingly, Ergodicity of 2D Navier-Stokes equations with random forcing and large viscosity. Comm. Math. Phys. 206(2), 273–288 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. J.C. Mattingly, Exponential convergence for the stochastically forced Navier–Stokes equations and other partially dissipative dynamics. Comm. Math. Phys. 230(3), 421–462 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. J.C. Mattingly, E. Pardoux, Malliavin calculus for the stochastic 2D Navier–Stokes equation. Comm. Pure Appl. Math. 59(12), 1742–1790 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. J.L. Menaldi, S.S Sritharan, Stochastic 2-D Navier–Stokes equation. Appl. Math. Optim. 46, 31–53 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  50. S.P. Meyn, R.L. Tweedie, in Markov Chains and Stochastic Stability, Communications and Control Engineering Series (Springer, London, 1993)

    Google Scholar 

  51. R. Mikulevicius, B.L. Rozovskii, Stochastic Navier–Stokes equations for turbulent flows. SIAM J. Math. Anal. 35(5), 1250–1310 (2005)

    Article  MathSciNet  Google Scholar 

  52. R. Mikulevicius, B.L. Rozovskii, Global L 2-solutions of stochastic Navier–Stokes equations. Ann. Probab. 33(1), 137–176 (2004)

    Article  MathSciNet  Google Scholar 

  53. D. Nualart, The Malliavin Calculus and Related Topics (Springer, 1995)

    Google Scholar 

  54. C. Odasso, Ergodicity for the stochastic complex Ginzburg–Landau equations. Ann. de l’IHP (B), Probab. Stat. 42(4), 417–454 (2006)

    Google Scholar 

  55. C. Odasso, Exponential mixing for stochastic PDEs: the non-additive case. Probab. Theory Relat. Fields 140(1–2), 41–82 (2008)

    MathSciNet  MATH  Google Scholar 

  56. C. Odasso, Exponential mixing for the 3D Navier–Stokes equation. Comm. Math. Phys. 270(1), 109–139 (2006)

    Article  MathSciNet  Google Scholar 

  57. M. Romito, Ergodicity of the finite dimensional approximations of the 3D Navier–Stokes equations forced by a degenerate noise. J. Stat. Phys. 114(1–2), 155–177 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  58. M. Romito, Analysis of equilibrium states of Markov solutions to the 3D Navier-Stokes equations driven by additive noise. J. Stat. Phys. 131(3) 415–444 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  59. M. Romito, L. Xu, Ergodicity of the 3D stochastic Navier–Stokes equations driven by mildly degenerate noise. Stoch. Process. Appl. (To appear)

    Google Scholar 

  60. M. Sanz-Solé, Malliavin Calculus (EPFL, Lausanne, 2005)

    MATH  Google Scholar 

  61. A. Shirikyan, Exponential mixing for 2D Navier-Stokes equation pertubed by an unbounded noise. J. Math. Fluid Mech. 6, 169–193 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  62. A. Shirikyan, Qualitative properties of stationary measures for three-dimensional Navier–Stokes equations. J. Funct. Anal. 249, 284–306 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  63. D.W. Stroock, S.R.S Varhadan, Multidimensional Diffusion Processes (Springer, 1979)

    Google Scholar 

  64. R. Temam, Navier–Stokes Equations (North-Holland, 1977)

    Google Scholar 

  65. R. Temam, in Navier–Stokes Equations and Nonlinear Functional Analysis, 2nd edn. CBMS-NSF Regional Conference Series in Applied Mathematics, vol 66 (SIAM, Philadelphia, 1995)

    Google Scholar 

  66. M. Viot, Solutions faibles d’équaions aux dérivées partielles stochastiques non linéaires, Thèse de Doctorat, Paris VI, 1976

    Google Scholar 

  67. M.I. Vishik, A. Fursikov, Mathematical Problems of Statistical Hydromechanics (Kluwer Academic, 1979)

    Google Scholar 

  68. E. Weinan, J.C. Mattingly, Y.G. Sinai, Gibbsian dynamics and ergodicity for the stochastically forced Navier–Stokes equation. Comm. Math. Phys. 224, 83–106 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  69. E. Weinan, J.C. Mattingly, Ergodicity for the Navier-Stokes equation with degenerate random forcing: finite-dimensional approximation. Comm. Pure Appl. Math. 54(11), 1386–1402 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Debussche .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Debussche, A. (2013). Ergodicity Results for the Stochastic Navier–Stokes Equations: An Introduction. In: Topics in Mathematical Fluid Mechanics. Lecture Notes in Mathematics(), vol 2073. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36297-2_2

Download citation

Publish with us

Policies and ethics