Skip to main content

A Leakage-Resilient Zero Knowledge Proof for Lattice Problem

  • Conference paper
  • 2480 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7672))

Abstract

Leakage-resilient cryptographic protocols have recently been evolving intensively, studying the question of designing protocol that maintain security even in the presence of side-channel attacks. Under leakage assumption(the verifier uses side-channel attacks to obtain some information about the secret state of the prover), the known zero knowledge protocol may not preserve zero knowledge any more. Garg et.al. first studied leakage-resilient zero knowledge and presented an excellent construction for NP. Unfortunately, the definition is not suitable for honest verifier leakage-resilient zero knowledge. In this paper, we give a new definition of leakage-resilient zero knowledge and construct a leakage-resilient zero knowledge proof for approximate version of the closest vector problem(\(\textsc{G}_{\textsc{AP}}\textsc{CVP}_\gamma\)). We also give a definition of leakage-resilient bit commitment scheme.

This work was supported by the National Natural Science Foundation of China under Grant No.60970139, the Strategic Priority Research Program of Chinese Academy of Sciences under Grant XDA06010702, and IIEs Cryptography Research Project.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajtai, M.: Secure computation with information leaking to an adversary. In: Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, June 6-8, pp. 715–724. ACM (2011)

    Google Scholar 

  2. Canetti, R., Goldreich, O., Goldwasser, S., Micali, S.: Resettable zero knowledge. In: Proc. 32nd STOC, pp. 235–244 (2000)

    Google Scholar 

  3. Damgård, I., Hazay, C., Patra, A.: Leakage Resilient Secure Two-Party Computation. IACR Cryptology ePrint Archive 2011: 256 (2011)

    Google Scholar 

  4. Dwork, C., Naor, M., Sahai, A.: Concurrent zero knowledge. In: Proc. 30th STOC, pp. 409–418 (1998)

    Google Scholar 

  5. Goldreich, O., Goldwasser, S., Halevi, S.: Public-Key Cryptosystems from Lattice Reduction Problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  6. Goldreich, O., Goldwasser, S.: On the limits of nonapproximability of lattice problems. J. Comput. System Sci. 60, 540–563 (2000)

    Article  MathSciNet  Google Scholar 

  7. Garg, S., Jain, A., Sahai, A.: Leakage-Resilient Zero Knowledge. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for NP. Journal of Cryptology 9(3), 167–189 (1996)

    Article  MathSciNet  Google Scholar 

  9. Goldwasser, S., Micali, S., Rachoff, C.: The knowledge complexity of interactive proof systems. Journal on Computing 18(1), 186–208 (1989)

    MathSciNet  MATH  Google Scholar 

  10. Micciancio, D.: Improving Lattice Based Cryptosystems Using the Hermite Normal Form. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 126–145. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Micciancio, D., Vadhan, S.P.: Statistical Zero-Knowledge Proofs with Efficient Provers: Lattice Problems and More. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: The Case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Pandey, O.: Achieving Constant Round Leakage-Resilient Zero-Knowledge. IACR Cryptology ePrint Archive 2012: 362 (2012)

    Google Scholar 

  14. Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: FOCS (2002)

    Google Scholar 

  15. Vadhan, S.P.: A Study of Statistical Zero-Knowledge Proofs. Massachusetts Institute of Technology (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Y., Li, H., Niu, Q. (2012). A Leakage-Resilient Zero Knowledge Proof for Lattice Problem. In: Xiang, Y., Lopez, J., Kuo, CC.J., Zhou, W. (eds) Cyberspace Safety and Security. CSS 2012. Lecture Notes in Computer Science, vol 7672. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35362-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35362-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35361-1

  • Online ISBN: 978-3-642-35362-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics