Skip to main content

Calibrating a Motion Model Based on Reinforcement Learning for Pedestrian Simulation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7660))

Abstract

In this paper, the calibration of a framework based in Multi-agent Reinforcement Learning (RL) for generating motion simulations of pedestrian groups is presented. The framework sets a group of autonomous embodied agents that learn to control individually its instant velocity vector in scenarios with collisions and friction forces. The result of the process is a different learned motion controller for each agent. The calibration of both, the physical properties involved in the motion of our embodied agents and the corresponding dynamics, is an important issue for a realistic simulation. The physics engine used has been calibrated with values taken from real pedestrian dynamics. Two experiments have been carried out for testing this approach. The results of the experiments are compared with databases of real pedestrians in similar scenarios. As a comparison tool, the diagram of speed versus density, known as fundamental diagram in the literature, is used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agre, P., Chapman, D.: Pengi: An implementation of a theory of activity. In: 6th Nat. Conf. on Artificial Intelligence, pp. 268–272. Morgan Kaufmann (1987)

    Google Scholar 

  2. Bierlaire, M., Robin, T.: Pedestrians choices. In: Timmermans, H. (ed.) Pedestrian Behavior, pp. 1–26. Emerald (2009)

    Google Scholar 

  3. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative multiagent systems. In: Proceedings of the Fifteenth National Conference on Artificial Intelligence, pp. 746–752. AAAI Press (1998)

    Google Scholar 

  4. Curtis, S., Lin, M., Manocha, D.: Walk This Way: A Lightweight, Data-Driven Walking Synthesis Algorithm. In: Allbeck, J.M., Faloutsos, P. (eds.) MIG 2011. LNCS, vol. 7060, pp. 400–411. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. García, J., López-Bueno, I., Fernández, F., Borrajo, D.: A Comparative Study of Discretization Approaches for State Space Generalization in the Keepaway Soccer Task. In: Reinforcement Learning: Algorithms, Implementations and Aplications. Nova Science Publishers (2010)

    Google Scholar 

  6. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407, 487 (2000)

    Article  Google Scholar 

  7. Helbing, D., Johansson, A.: Pedestrian, Crowd and Evacuation Dynamics. In: Encyc. of Complex. and Systems Science, Part 16, pp. 6476–6495. Springer (2009)

    Google Scholar 

  8. Helbing, D., Johansson, A., Al-Abideen, H.Z.: Dynamics of crowd disasters: An empirical study. Phys. Rev. E 75, 046109 (2007)

    Google Scholar 

  9. Helbing, D., Molnár, P., Farkas, I., Bolay, K.: Self-organizing pedestrian movement. Environment and Planning. Part B: Planning and Design 28, 361–383 (2001)

    Article  Google Scholar 

  10. Herman, I.P.: Physics of the Human Body. Springer (2007)

    Google Scholar 

  11. Hoogerndoorn, S.P., Daamen, W.: A novel calibration approach of microscopic pedestrian models. In: Pedestrian Behavior, pp. 195–214. Emerald (2009)

    Google Scholar 

  12. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learning. In: Proceedings of the Eleventh International Conference on Machine Learning, New Brunswick, NJ, pp. 157–163 (2005)

    Google Scholar 

  13. Martinez-Gil, F., Lozano, M., Fernández, F.: Multi-agent Reinforcement Learning for Simulating Pedestrian Navigation. In: Vrancx, P., Knudson, M., Grześ, M. (eds.) ALA 2011. LNCS, vol. 7113, pp. 54–69. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Masen, M.: A systems based experimental approach to tactile friction. Journal of the Mechanical Behavior of Biomedical Materials, 1620–1626 (2011)

    Google Scholar 

  15. Mataric, M.J.: Learning to behave socially. In: From Animals to Animats: Int. Conf. on Simulation of Adaptive Behavior, pp. 453–462. MIT Press (1994)

    Google Scholar 

  16. Mori, M., Tsukaguchi, H.: A new method for evaluation of level of service in pedestrian facilities. Transportation Research Part A 21(3), 223–234 (1987)

    Article  Google Scholar 

  17. Seyfried, A., Steffen, B., Klingsch, W., Lippert, T., Boltes, M.: Steps toward the fundamental diagram. Empirical results and modelling. In: Pedestrian and Evacuation Dynamics 2005, Part 3, pp. 377–390. Springer (2007)

    Google Scholar 

  18. Pelechano, N., Allbeck, J., Badler, N.: Controlling individual agents in high-density crowd simulation. In: Proc. ACM/SIGGRAPH/Eurographycs Symp. Computer Animation, pp. 99–108 (2007)

    Google Scholar 

  19. Robin, T., Antonioni, G., Bierlaire, M., Cruz, J.: Specification, estimation and validation of a pedestrian walking behavior model. Transportation Research 43, 36–56 (2009)

    Article  Google Scholar 

  20. Schadschneider, A., Seyfried, A.: Validation of ca models of pedestrian dynamics with fundamental diagrams. Cybernetics and Systems 5(40), 367–389 (2009)

    Article  Google Scholar 

  21. Sen, S., Sekaran, M.: Multiagent Coordination with Learning Classifier Systems. In: Weiss, G., Sen, S. (eds.) IJCAI-WS 1995. LNCS, vol. 1042, pp. 218–233. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  22. Shao, W., Terzopoulos, D.: Autonomous pedestrians. In: Proceedings of the 2005 ACM SIGGRAPH Symposium on Computer Animation, pp. 19–28. ACM Press, New York (2005)

    Google Scholar 

  23. Steiner, A., Philipp, M., Schmid, A.: Parameter stimation for pedestrian simulation model. In: 7th Swiss Transport Research Conf., pp. 1–29 (2007)

    Google Scholar 

  24. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  25. Szepesvári, C.: Algorithms for reinforcement learning. Morgan Claypool (2010)

    Google Scholar 

  26. Teknomo, K.: Microscopic Pedestrian Flow Characteristics: Development of an Image Processing Data Collection and Simulation Model. PhD thesis, Tohoku University, Japan (2002)

    Google Scholar 

  27. Weidmann, U.: Transporttechnik der fussgänger - transporttechnische eigenschaften des fussgängerverkehrs (literaturstudie). Literature Research 90, IVT an der ETH Zürich, ETH-Hönggerberg, CH-8093 Zürich (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martinez-Gil, F., Lozano, M., Fernández, F. (2012). Calibrating a Motion Model Based on Reinforcement Learning for Pedestrian Simulation. In: Kallmann, M., Bekris, K. (eds) Motion in Games. MIG 2012. Lecture Notes in Computer Science, vol 7660. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34710-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34710-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34709-2

  • Online ISBN: 978-3-642-34710-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics