Skip to main content

Fluid Motion Estimation Based on Energy Constraint

  • Conference paper
Book cover AsiaSim 2012 (AsiaSim 2012)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 324))

Included in the following conference series:

  • 1385 Accesses

Abstract

This paper presents a method for motion estimation of fluid flow in natural scene. Due to drastic brightness changes in images sequence, previous methods based on continuity equation or brightness consistency constraint cannot be applied in this context well. We define Brightness Distribution Matrix (BDM) to present regional brightness. In the initialization of motion field, the BDM consistency between original point and corresponding point is used as a constraint. Towards the incorrect motion vector caused by drastic brightness change, we denoise to the initial motion field by statistical method, and then a novel smoothness constraint is applied to optimization for denoised motion field. The results of natural fluid flow in images show the validity of our method and the obtained motion field can be used to process 3D recovery for fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yu, M.-S., Li, S.-F.: Dynamic Facial Expression Recognition Based on Optical Flow. Journal of Microelectronics and Computer 22, 113–119 (2005)

    Google Scholar 

  2. Yang, G.-L., Wang, Z.-L., Wang, G.-J., Chen, F.-J.: Facial Expression Recognition Based on Optical Flow for Non-rigid Motion Analysis. Journal of Computer Science 34, 213–229 (2007)

    Google Scholar 

  3. Das Peddada, S., McDevitt, R.: Least Average Residual Algorithm(LARA) for Tracking the Motion of Arctic Sea Ice. IEEE Trans. Geoscience and Remote Sensing 34(4), 915–926 (1996)

    Article  Google Scholar 

  4. Ottenbacher, A., Tomasini, M., Holmund, K., Schmetz, J.: Low-Level Cloud Motion Winds from Metrosat High-Resolution Visible Imagery. Weather and Forecasting 12(1), 175–184 (1997)

    Article  Google Scholar 

  5. Cohen, I., Herlin, I.: Non Uniform Multiresolution Method for Optical Flow and Phase Portrait Models: Environmental Applications. International Journal of Computer Vision 33(1), 29–49 (1999)

    Article  Google Scholar 

  6. Lu, Z., Liao, Q., Pei, J.: A PIV Approach Based on Nonlinear Filter. Journal of Electronics & Information Technology 32(2) (2010)

    Google Scholar 

  7. Shu, X., Kang, S., Long, Y.: Method of medical image registration based on optical flow field. Computer Engineering and Applications 44, 191–198 (2008)

    Google Scholar 

  8. Nogawa, H., Nakajima, Y., Sato, Y.: Acquisition of Symbolic Description from Flow Fields: A New Approach Based on a Fluid Model. IEEE Trans. Pattern Analysis Machine Intelligence 19, 58–63 (1997)

    Article  Google Scholar 

  9. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  10. Lucas, B.D., Kanade, T.: An Iterative Image Registration Technique with an Application to Stereo Vision. In: Proceedings of Imaging Understanding Workshop, pp. 121–130 (1981)

    Google Scholar 

  11. Tistarelli, M.: Multiple Constraints for Optical Flow. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 61–70. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  12. Uras, S., Girosi, F., Verri, A., Torre, V.: A computational approach to motion perception. Biological Cybernetics 60, 79–87 (1988)

    Article  Google Scholar 

  13. Corpetti, T., Memin, E., Perez, P.: Dense Estimation of fluid flows. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(3) (2002)

    Google Scholar 

  14. Zhou, L., Kambhamettu, C., Goldof, D.B.: Fluid structure and motion analysis from multi-spectrum 2D cloud image sequence. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 744–751 (2000)

    Google Scholar 

  15. Nakajima, Y., Inomata, H., Nogawa, H., Sato, Y., Tamura, S., Okazaki, K., Torii, S.: Physics-based flow estimation of fluids. Pattern Recognition 36, 1203–1212 (2003)

    Article  Google Scholar 

  16. Arnaud, E., Mémin, É., Sosa, R., Artana, G.: A fluid motion estimator for schlieren image velocimetry. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 198–210. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Sakaino, H.: Fluid Motion Estimation Method based on Physical Properties of Waves. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  18. Fitzpatrick, J.M., Pederson, C.A.: A Method for Calculating Fluid Flow in Time Dependent Density Images. Electronic Imaging 1, 347–352 (1988)

    Google Scholar 

  19. Wang, Y., Zhai, H., Mu, G.: Shape description matrix and its application to color-image retrieval and recognition. Science in China E 47, 159–165 (2004)

    Article  Google Scholar 

  20. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High Accuracy Optical Flow Estimation Based on a Theory for Warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision, 321–331 (1987)

    Google Scholar 

  22. DynTex dynamic texture library, http://projects.cwi.nl/dyntex/index.html

  23. Deqing Sun, S., Stefan, R., Michael, J.B.: Secrets of optical flow estimation and their principles. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, California (2010)

    Google Scholar 

  24. Nilanjan, R.: Computation of fluid and particle motion from a time-sequenced image pair: A Global Outlier Identification Approach. IEEE Transactions on Image Processing 10(20), 2925–2936 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhuang, H., Quan, H. (2012). Fluid Motion Estimation Based on Energy Constraint. In: Xiao, T., Zhang, L., Fei, M. (eds) AsiaSim 2012. AsiaSim 2012. Communications in Computer and Information Science, vol 324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34390-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34390-2_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34389-6

  • Online ISBN: 978-3-642-34390-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics