Skip to main content

Abstract

Electric power production infrastructures around the globe are shifting from centralised, controllable production to decentralised structures based on distributed microgeneration. As the share of renewable energy sources such as wind and solar power increases, electric power production becomes subject to unpredictable and significant fluctuations. This paper reports on formal behavioural models of future power grids with a substantial share of renewable, especially photovoltaic, microgeneration. We give a broad overview of the various system aspects of interest and the corresponding challenges in finding suitable abstractions and developing formal models. We focus on current developments within the German power grid, where enormous growth rates of microgeneration start to induce stability problems of a new kind. We build formal models to investigate runtime control algorithms for photovoltaic microgenerators in terms of grid stability, dependability and fairness. We compare the currently implemented and proposed runtime control strategies to a set of approaches that take up and combine ideas from randomised distributed algorithms widely used in communication protocols today. Our models are specified in Modest, an expressive modelling language for stochastic timed systems with a well-defined semantics. Current tool support for Modest allows the evaluation of the models using simulation as well as model-checking techniques.

This work has been supported by the DFG as part of SFB/TR 14 AVACS, by the DFG/NWO Bilateral Research Program ROCKS, and by the European Union FP7-ICT project MEALS, contract no. 295261.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berrang, P., Bogdoll, J., Hahn, E.M., Hartmanns, A., Hermanns, H.: Dependability results for power grids with decentralized stabilization strategies. Reports of SFB/TR 14 AVACS 83 (2012) ISSN: 1860-9821, http://www.avacs.org

  3. Berrang, P., Hartmanns, A., Hermanns, H.: A comparative analysis of decentralized power grid stabilization strategies. In: Winter Simulation Conference (to appear, 2012)

    Google Scholar 

  4. Bogdoll, J., David, A., Hartmanns, A., Hermanns, H.: mctau: Bridging the Gap between Modest and UPPAAL. In: Donaldson, A., Parker, D. (eds.) SPIN 2012. LNCS, vol. 7385, pp. 227–233. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. Bogdoll, J., Hartmanns, A., Hermanns, H.: Simulation and Statistical Model Checking for Modestly Nondeterministic Models. In: Schmitt, J.B. (ed.) MMB & DFT 2012. LNCS, vol. 7201, pp. 249–252. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: A compositional modeling formalism for hard and softly timed systems. IEEE Transactions on Software Engineering 32(10), 812–830 (2006)

    Article  Google Scholar 

  7. Bömer, J., Burges, K., Zolotarev, P., Lehner, J.: Auswirkungen eines hohen Anteils dezentraler Erzeugungsanlagen auf die Netzstabilität bei Überfrequenz & Entwicklung von Lösungsvorschlägen zu deren Überwindung (2011); study commissioned by EnBW Transportnetze AG, Bundesverband Solarwirtschaft e.V. and Forum Netztechnik/Netzbetrieb im VDE e.V

    Google Scholar 

  8. Le Boudec, J.-Y., Tomozei, D.-C.: A Demand-Response Calculus with Perfect Batteries. In: Schmitt, J.B. (ed.) MMB & DFT 2012. LNCS, vol. 7201, pp. 273–287. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Bundesnetzagentur: EEG-Vergütungssätze für Photovoltaikanlagen, http://www.bundesnetzagentur.de/cln_1931/DE/Sachgebiete/ElektrizitaetGas/ErneuerbareEnergienGesetz/VerguetungssaetzePVAnlagen/VerguetungssaetzePhotovoltaik_Basepage.html (March 21, 2012)

  10. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Automatic Verification of Competitive Stochastic Systems. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 315–330. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Dolev, S.: Self-Stabilization. MIT Press (2000)

    Google Scholar 

  12. Haas, P.J., Shedler, G.S.: Regenerative generalized semi-Markov processes. Communications in Statistics. Stochastic Models 3(3), 409–438 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional modelling and analysis framework for stochastic hybrid systems. Formal Methods in System Design (2012), doi: 10.1007/s10703-012-0167-z

    Google Scholar 

  14. Hartmanns, A.: Model-Checking and Simulation for Stochastic Timed Systems. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 372–391. Springer, Heidelberg (2011)

    Google Scholar 

  15. Hartmanns, A., Hermanns, H.: A Modest approach to checking probabilistic timed automata. In: QEST. pp. 187–196. IEEE Computer Society (2009)

    Google Scholar 

  16. Hermanns, H., Wiechmann, H.: Future design challenges for electric energy supply. In: ETFA. pp. 1–8. IEEE (2009)

    Google Scholar 

  17. Hermanns, H., Wiechmann, H.: Demand-Response Managment for Dependable Power Grids. In: Embedded Systems for Smart Appliances and Energy Managment, Embedded Systems, vol. 3. Springer Science+Business Media, New York (2012)

    Google Scholar 

  18. Hildmann, H., Saffre, F.: Influence of variable supply and load flexibility on demand-side management. In: EEM 2011, pp. 63–68. IEEE Conference Publications (2011)

    Google Scholar 

  19. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. Theor. Comput. Sci. 282(1), 101–150 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lehnhoff, S.: Private communication (2012)

    Google Scholar 

  21. Martins, J., Platzer, A., Leite, J.: Statistical Model Checking for Distributed Probabilistic-Control Hybrid Automata with Smart Grid Applications. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 131–146. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Nordwest-Zeitung: EWE spürt Wende deutlich (March 12, 2012), http://www.nwzonline.de/Aktuelles/Politik/Hintergrund/NWZ/Artikel/2822057/EWE-sp%FCrt-Wende-deutlich.html

  23. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. John Wiley & Sons Inc., New York (1994)

    MATH  Google Scholar 

  24. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. Ph.D. thesis, MIT, Cambridge, MA, USA (1995)

    Google Scholar 

  25. Wiechmann, H.: Private communication (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hartmanns, A., Hermanns, H. (2012). Modelling and Decentralised Runtime Control of Self-stabilising Power Micro Grids. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Technologies for Mastering Change. ISoLA 2012. Lecture Notes in Computer Science, vol 7609. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34026-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34026-0_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34025-3

  • Online ISBN: 978-3-642-34026-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics