Skip to main content

Communication-Efficient Self-stabilization in Wireless Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7596))

Abstract

A self-stabilizing protocol is guaranteed to eventually reach a safe (or legitimate) configuration even when started from an arbitrary configuration. Most of self-stabilizing protocols require each process to keep communicating with all of its neighbors forever even after reaching a safe configuration. Such permanent communication impairs efficiency, but is necessary in nature of self-stabilization.

The concept of communication-efficiency was introduced to reduce communication after reaching a safe configuration. The previous concept targets the point-to-point communication model, and is not appropriate to the wireless network model where a process can locally broadcast a message to its neighbors all at once.

In this paper, we refine the concept of the communication-efficiency for the wireless network model, and investigate its possibility in self-stabilization for some fundamental problems; the minimal (connected) dominating set problem, the maximal independent set problem, and the spanning tree construction problem.

This work is supported in part by Grant-in-Aid for Scientific Research ((B)20300012. (B)22300009, (B)23700056, (C)24500039) of JSPS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dolev, S.: Self-stabilization. The MIT press (2000)

    Google Scholar 

  2. Devismes, S., Masuzawa, T., Tixeuil, S.: Communication efficiency in self-stabilizing silent protocols. In: Proc. of IEEE ICDCS, pp. 474–481 (2009)

    Google Scholar 

  3. Masuzawa, T., Izumi, T., Katayama, Y., Wada, K.: Brief Announcement: Communication-Efficient Self-stabilizing Protocols for Spanning-Tree Construction. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 219–224. Springer, Heidelberg (2009)

    Google Scholar 

  4. Masuzawa, T.: Silence Is Golden: Self-stabilizing Protocols Communication-Efficient after Convergence. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp. 1–3. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Stable Leader Election. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 108–122. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: On implementing omega with weak reliability and synchrony assumptions. In: Proc. of PODC, pp. 306–314 (2003)

    Google Scholar 

  7. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Communication-efficient leader election and consensus with limited link synchrony. In: Proc. of PODC, pp. 328–337 (2004)

    Google Scholar 

  8. Biely, M., Widder, J.: Optimal message-driven implementations of omega with mute processes. ACM TAAS 4(1), 4:1–4:22 (2009)

    Article  Google Scholar 

  9. Larrea, M., Fernández, A., Arévalo, S.: Optimal implementation of the weakest failure detector for solving consensus. In: Proc. of SRDS, pp. 52–59 (2000)

    Google Scholar 

  10. Dolev, S., Schiller, E.: Communication adaptive self-stabilizing group membership service. IEEE TPDS 14(7), 709–720 (2003)

    Google Scholar 

  11. Kutten, S., Zinenko, D.: Low Communication Self-stabilization through Randomization. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 465–479. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Ikeda, M., Kamei, S., Kakugawa, H.: A space-optimal self-stabilizing algorithm for the maximal independent set problem. In: Proc. of PDCAT, pp. 70–74 (2002)

    Google Scholar 

  13. Arora, A., Gouda, M.G.: Distributed Reset. IEEE Trans. Comp. 43(9), 1026–1038 (1994)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Takimoto, T., Ooshita, F., Kakugawa, H., Masuzawa, T. (2012). Communication-Efficient Self-stabilization in Wireless Networks. In: Richa, A.W., Scheideler, C. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2012. Lecture Notes in Computer Science, vol 7596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33536-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33536-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33535-8

  • Online ISBN: 978-3-642-33536-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics