Skip to main content

Review of Schizophrenia Research Using MEG

  • Chapter
  • First Online:

Abstract

Schizophrenia is a severe form of mental illness characterized by hallucinations, delusions, changes in affect and serious cognitive and social dysfunction. MEG has made contributions to our understanding of the disorder in many areas, although the most significant contributions have been in four areas. First, MEG has suggested that schizophrenia may be characterized by alteration in cerebral lateralization, particularly in auditory evoked responses. Second, auditory evoked responses suggest significant impairment in early auditory perceptual processes. Third, in one of these sensory deficits in particular, the underlying source configuration of sensory gating abnormalities has provided us with information about the localization of the deficit that was not apparent from EEG studies. Finally, spectrotemporal abnormalities are evident in the disorder, particularly for low frequency oscillations, and MEG has contributed to our understanding of the regional distribution of those anomalies. These and other interesting, but less well characterized electrophysiological phenomena studied using MEG methods in schizophrenia and related psychopathologies, are reviewed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrams DJ, Rojas DC, Arciniegas DB (2008) Is schizoaffective disorder a distinct categorical diagnosis? a critical review of the literature. Neuropsychiatric Dis Treat 4(6):1089–1109

    Google Scholar 

  • Adler LE et al (1982) Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biol Psychiatry 17(6):639–654

    Google Scholar 

  • Adler LE et al (2004) Varied effects of atypical neuroleptics on P50 auditory gating in schizophrenia patients. Am J Psychiatry 161(10):1822–1828

    Google Scholar 

  • Ahveninen J et al (2006) Inherited auditory-cortical dysfunction in twin pairs discordant for schizophrenia. Biol Psychiatry 60(6):612–620

    Google Scholar 

  • Aleman A, Kahn RS, Selten J-P (2003) Sex differences in the risk of schizophrenia: evidence from meta-analysis. Arch Gen Psychiatry 60(6):565–571

    Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. Author, Washington, DC

    Google Scholar 

  • Bachmann S et al (2010) MEG does not reveal impaired sensory gating in first-episode schizophrenia. Schizophr Res 121(1–3):131–138

    Google Scholar 

  • Barch DMD, Ceaser AA (2012) Cognition in schizophrenia: core psychological and neural mechanisms. Trends Cogn Sci 16(1):8

    Google Scholar 

  • Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8(1):45–56

    Google Scholar 

  • Bassett DS et al (2009) Cognitive fitness of cost-efficient brain functional networks. Proc Natl Acad Sci 106(28):11747–11752

    Google Scholar 

  • Benes FMF (2012) A new paradigm for understanding gamma-aminobutyric acid cell pathology in schizophrenia? Biol Psychiatry 72(9):712–713

    Google Scholar 

  • Bleuler E (1911) Dementia praecox or the group of schizophrenias. International Universities Press, New York

    Google Scholar 

  • Blumenfeld LD, Clementz BA (1999) Hemispheric differences on auditory evoked response suppression in schizophrenia. NeuroReport 10(12):2587–2591

    Google Scholar 

  • Blumenfeld LD, Clementz BA (2001) Response to the first stimulus determines reduced auditory evoked response suppression in schizophrenia: single trials analysis using MEG. Clin Neurophysiol 112(9):1650–1659

    Google Scholar 

  • Bonnefond M, Jensen O (2012) Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Curr Biol 22(20):1969–1974

    Google Scholar 

  • Brenner CAC et al (2009) Steady state responses: electrophysiological assessment of sensory function in schizophrenia. Brain Res Brain Res Rev 35(6):1065–1077

    Google Scholar 

  • Canive JM et al (1996) Magnetoencephalographic assessment of spontaneous brain activity in schizophrenia. Psychopharmacol Bull 32(4):741–750

    Google Scholar 

  • Canuet L et al (2011) Psychopathology and working memory-induced activation of the prefrontal cortex in schizophrenia-like psychosis of epilepsy: evidence from magnetoencephalography. Psychiatry Clin Neurosci 65(2):183–190

    Google Scholar 

  • Canuet L et al (2010) Working memory abnormalities in chronic interictal epileptic psychosis and schizophrenia revealed by magnetoencephalography. Epilepsy Behav 17(1):109–119

    Google Scholar 

  • Clementz BA, Blumenfeld LD, Cobb S (1997) The gamma band response may account for poor P50 suppression in schizophrenia. NeuroReport 8(18):3889–3893

    Google Scholar 

  • Dale CL et al (2010) Timing is everything: neural response dynamics during syllable processing and its relation to higher-order cognition in schizophrenia and healthy comparison subjects. Int J Psychophysiol: Official J Int Organ Psychophysiol 75(2):183–193

    MathSciNet  Google Scholar 

  • Dima D et al (2012) Abnormal intrinsic and extrinsic connectivity within the magnetic mismatch negativity brain network in schizophrenia: a preliminary study. Schizophr Res 135(1–3):23–27

    Google Scholar 

  • Edgar JC et al (2005) Cross-modal generality of the gating deficit. Psychophysiology 42(3):318–327

    Google Scholar 

  • Edgar JC et al (2003) Interpreting abnormality: an EEG and MEG study of P50 and the auditory paired-stimulus paradigm. Biol Psychol 65(1):1–20

    Google Scholar 

  • Edgar JC et al (2006) Reduced auditory M100 asymmetry in schizophrenia and dyslexia: applying a developmental instability approach to assess atypical brain asymmetry. Neuropsychologia 44(2):289–299

    Google Scholar 

  • Edgar JC et al (2008) Superior temporal gyrus spectral abnormalities in schizophrenia. Psychophysiology 45(5):812–824

    Google Scholar 

  • Edgar JC et al (2012) Temporal and frontal cortical thickness associations with M100 auditory activity and attention in healthy controls and individuals with schizophrenia. Schizophr Res 140(1–3):250–257

    Google Scholar 

  • Fehr T et al (2001) Source distribution of neuromagnetic slow waves and MEG-delta activity in schizophrenic patients. Biol Psychiatry 50(2):108–116

    Google Scholar 

  • Fehr T et al (2003) Source distribution of neuromagnetic slow-wave activity in schizophrenic patients–effects of activation. Schizophr Res 63(1–2):63–71

    Google Scholar 

  • Fernandez A et al (2011) Lempel-Ziv complexity in schizophrenia: a MEG study. Clin Neurophysiol 122(11):2227–2235

    Google Scholar 

  • Forbes NF et al (2009) Working memory in schizophrenia: a meta-analysis. Psychol Med 39(6):889–905

    MathSciNet  Google Scholar 

  • Freedman R et al (2003) The genetics of sensory gating deficits in schizophrenia. Curr Psychiatry Rep 5(2):155–161

    Google Scholar 

  • Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19(4):1273–1302

    Google Scholar 

  • Fujimoto T et al (2012) Changes in event-related desynchronization and synchronization during the auditory oddball task in schizophrenia patients. Open Neuroimaging J 6:26–36

    Google Scholar 

  • Gaetz W et al (2011) Relating MEG measured motor cortical oscillations to resting γ-aminobutyric acid (GABA) concentration. NeuroImage 55(2):616–621

    Google Scholar 

  • Gejman PVP, Sanders ARA, Kendler KSK (2011) Genetics of schizophrenia: new findings and challenges. Genomics Hum Genet 12:121–144

    Google Scholar 

  • Goldstein JM (1988) Gender differences in the course of schizophrenia. Am J Psychiatry 145(6):684–689

    Google Scholar 

  • Gottesman II (1991) Schizophrenia genesis: the origins of madness. W H Freeman/Times Books/ Henry Holt & Co, New York

    Google Scholar 

  • Green MF (2006) Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. J Clin Psychiatry 67(10):e12

    Google Scholar 

  • Hajek M, Boehle C et al (1997a) Abnormalities of auditory evoked magnetic fields in the right hemisphere of schizophrenic females. Schizophr Res 24(3):329–332

    Google Scholar 

  • Hajek M, Huonker R et al (1997b) Abnormalities of auditory evoked magnetic fields and structural changes in the left hemisphere of male schizophrenics–a magnetoencephalographic-magnetic resonance imaging study. Biol Psychiatry 42(7):609–616

    Google Scholar 

  • Hamm JP et al (2011) Abnormalities of neuronal oscillations and temporal integration to low- and high-frequency auditory stimulation in schizophrenia. Biol Psychiatry 69(10):989–996

    Google Scholar 

  • Hanlon FM et al (2011) Bilateral hippocampal dysfunction in schizophrenia. NeuroImage 58(4):1158–1168

    Google Scholar 

  • Hanlon FM, Miller GA et al (2005a) Distinct M50 and M100 auditory gating deficits in schizophrenia. Psychophysiology 42(4):417–427

    Google Scholar 

  • Hanlon FM, Weisend MP et al (2005b) A specific test of hippocampal deficit in schizophrenia. Behav Neurosci 119(4):863–875

    Google Scholar 

  • Hari R, Hämäläinen M, Joutsiniemi SL (1989) Neuromagnetic steady-state responses to auditory stimuli. J Acoust Soc Am 86(3):1033–1039

    Google Scholar 

  • Hari RR et al (1982) Interstimulus interval dependence of the auditory vertex response and its magnetic counterpart: implications for their neural generation. Electroencephalogr Clin Neurophysiol 54(5):561–569

    Google Scholar 

  • Hájos N, Paulsen O (2009) Network mechanisms of gamma oscillations in the CA3 region of the hippocampus. Neural Networks: Official J Int Neural Network Soc 22(8):1113–1119

    Google Scholar 

  • Heim S et al (2004) Cerebral lateralization in schizophrenia and dyslexia: neuromagnetic responses to auditory stimuli. Neuropsychologia 42(5):692–697

    Google Scholar 

  • Hinkley LBN et al (2011) Clinical symptoms and alpha band resting-state functional connectivity imaging in patients with schizophrenia: implications for novel approaches to treatment. Biol Psychiatry 70(12):1134–1142

    Google Scholar 

  • Hirano S et al (2008) Abnormal neural oscillatory activity to speech sounds in schizophrenia: a magnetoencephalography study. J Neurosci: Official J Soc Neurosci 28(19):4897–4903

    Google Scholar 

  • Hirano Y et al (2010) Auditory gating deficit to human voices in schizophrenia: a MEG study. Schizophr Res 117(1):61–67

    Google Scholar 

  • Ho M-HR et al (2008) Time-frequency discriminant analysis of MEG signals. NeuroImage 40(1):174–186

    Google Scholar 

  • Holcomb HH et al (1995) Tone discrimination performance in schizophrenic patients and normal volunteers: impact of stimulus presentation levels and frequency differences. Psychiatry Res Neuroimaging 57(1):75–82

    Google Scholar 

  • Hong LE et al (2004) Evoked gamma band synchronization and the liability for schizophrenia. Schizophr Res 70(2–3):293–302

    Google Scholar 

  • Huang M-X et al (2010) Somatosensory system deficits in schizophrenia revealed by MEG during a median-nerve oddball task. Brain Topogr 23(1):82–104

    Google Scholar 

  • Huang MX et al (2003) Predicting EEG responses using MEG sources in superior temporal gyrus reveals source asynchrony in patients with schizophrenia. Clin Neurophysiol 114(5):835–850

    Google Scholar 

  • Ikezawa K et al (2011) Decreased alpha event-related synchronization in the left posterior temporal cortex in schizophrenia: a magnetoencephalography-beamformer study. Neurosci Res 71(3):235–243

    Google Scholar 

  • Ince NF et al (2009) Classification of schizophrenia with spectro-temporo-spatial MEG patterns in working memory. Clin Neurophysiol 120(6):1123–1134

    Google Scholar 

  • Ince NF et al (2008) Selection of spectro-temporal patterns in multichannel MEG with support vector machines for schizophrenia classification. In: Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society. IEEE Engineering in Medicine and Biology Society, pp 3554–3557

    Google Scholar 

  • Ioannides AA et al (2004) Real-time neural activity and connectivity in healthy individuals and schizophrenia patients. NeuroImage 23(2):473–482

    Google Scholar 

  • Ishii R et al (2000) Theta rhythm increases in left superior temporal cortex during auditory hallucinations in schizophrenia: a case report. NeuroReport 11(14):3283–3287

    Google Scholar 

  • Isohanni M et al (2001) Early developmental milestones in adult schizophrenia and other psychoses. A 31-year follow-up of the Northern Finland 1966 Birth Cohort. Schizophr Res 52(1–2):1–19

    Google Scholar 

  • Jardri (2011) Cortical activations during auditory verbal hallucinations in schizophrenia: a coordinate-based meta-analysis. Am J Psychiatry 168(1):73–81

    Google Scholar 

  • Javitt DC, Shelley A, Ritter W (2000) Associated deficits in mismatch negativity generation and tone matching in schizophrenia. Clin Neurophysiol 111(10):1733–1737

    Google Scholar 

  • Jensen O, Tesche CD (2002) Frontal theta activity in humans increases with memory load in a working memory task. Eur J Neurosci 15(8):1395–1399

    Google Scholar 

  • Jensen O et al (2002) Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex (New York 1991) 12(8):877–882

    Google Scholar 

  • Jordanov T et al (2010) Local Heschl’s gyrus-based coordinate system for intersubject comparison of M50 auditory response modeled by single equivalent current dipole. J Neurosci Methods 192(1):121–126

    MathSciNet  Google Scholar 

  • Jordanov T et al (2011) Reduced mismatch negativity and increased variability of brain activity in schizophrenia. Clin Neurophysiol 122(12):2365–2374

    Google Scholar 

  • Kasai K et al (2003) Neuromagnetic correlates of impaired automatic categorical perception of speech sounds in schizophrenia. Schizophr Res 59(2–3):159–172

    Google Scholar 

  • Kaufman L et al (1992) Changes in cortical activity when subjects scan memory for tones. Electroencephalogr Clin Neurophysiol 82(4):266–284

    Google Scholar 

  • Kircher TTJ et al (2004) Mismatch negativity responses in schizophrenia: a combined fMRI and whole-head MEG study. Am J Psychiatry 161(2):294–304

    Google Scholar 

  • Kissler J et al (2000) MEG gamma band activity in schizophrenia patients and healthy subjects in a mental arithmetic task and at rest. Clin Neurophysiol 111(11):2079–2087

    Google Scholar 

  • Klimesch WW, Sauseng PP, Hanslmayr SS (2007) EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res Rev 53(1):63–88

    Google Scholar 

  • Koenig TT et al (2012) Is gamma band EEG synchronization reduced during auditory driving in schizophrenia patients with auditory verbal hallucinations? Schizophr Res 141(2–3):266–270

    Google Scholar 

  • Koh Y et al (2011) An MEG study of alpha modulation in patients with schizophrenia and in subjects at high risk of developing psychosis. Schizophr Res 126(1–3):36–42

    Google Scholar 

  • Kotini A, Anninos P (2002) Detection of non-linearity in schizophrenic patients using magnetoencephalography. Brain Topogr 15(2):107–113

    Google Scholar 

  • Koudabashi A et al (2004) Spatiotemporal characteristics of MEG and EEG entrainment with photic stimulation in schizophrenia. In: Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society. IEEE Engineering in Medicine and Biology Society, vol 6, pp 4465–4468

    Google Scholar 

  • Kreitschmann-Andermahr I et al (1999) Impaired sensory processing in male patients with schizophrenia: a magnetoencephalographic study of auditory mismatch detection. Schizophr Res 35(2):121–129

    Google Scholar 

  • Kwon JS et al (1999) Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiatry 56(11):1001–1005

    Google Scholar 

  • Lewis DA et al (2012) Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci 35(1):57–67

    Google Scholar 

  • Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6(4):312–324

    Google Scholar 

  • Lieberman JA, Stroup TS (2011) The NIMH-CATIE Schizophrenia Study: what did we learn? Am J Psychiatry 168(8):770–775

    Google Scholar 

  • Lopez-Ibor JJ et al (2008) The perception of emotion-free faces in schizophrenia: a magneto-encephalography study. Schizophr Res 98(1–3):278–286

    Google Scholar 

  • Lu BY et al (2007) Improved test-retest reliability of 50-ms paired-click auditory gating using magnetoencephalography source modeling. Psychophysiology 44(1):86–90

    Google Scholar 

  • Maharajh K et al (2010) Fluctuation of gamma-band phase synchronization within the auditory cortex in schizophrenia. Clin Neurophysiol: Official J Int Fed Clin Neurophysiol 121(4):542–548

    Google Scholar 

  • Makeig S et al (2004) Mining event-related brain dynamics. Trends Cogn Sci 8(5):7

    Google Scholar 

  • Mäkelä JP et al (2004) Functional differences between auditory cortices of the two hemispheres revealed by whole-head neuromagnetic recordings. Hum Brain Mapp 1(1):48–56

    Google Scholar 

  • Muthukumaraswamy SD, Johnson BW (2004) Primary motor cortex activation during action observation revealed by wavelet analysis of the EEG. Clin Neurophysiol 115(8):1760–1766

    Google Scholar 

  • Naatanen R, Kähkönen S (2009) Central auditory dysfunction in schizophrenia as revealed by the mismatch negativity (MMN) and its magnetic equivalent MMNm: a review. Int J Neuropsychopharmacol Official Sci J Collegium Int Neuropsychopharmacologicum (CINP) 12(1):125–135

    Google Scholar 

  • Nakasato N et al (1995) Functional localization of bilateral auditory cortices using an MRI-linked whole head magnetoencephalography (MEG) system. Electroencephalogr Clin Neurophysiol 94(3):183–190

    Google Scholar 

  • Pantev C et al (1991) Human auditory evoked gamma-band magnetic fields. Proc Natl Acad Sci 88(20):8996–9000

    Google Scholar 

  • Pantev C et al (1998) Study of the human auditory cortices using a whole-head magnetometer: left versus right hemisphere and ipsilateral versus contralateral stimulation. Audiol Neuro-Otology 3(2–3):183–190. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=9575384&retmode=ref&cmd=prlinks

  • Pantev CC et al (1995) Specific tonotopic organizations of different areas of the human auditory cortex revealed by simultaneous magnetic and electric recordings. Electroencephalogr Clin Neurophysiol 94(1):26–40

    Google Scholar 

  • Patterson JVJ et al (2008) P50 sensory gating ratios in schizophrenics and controls: A review and data analysis. Psychiatry Res Neuroimaging 158(2):22

    Google Scholar 

  • Pekkonen E et al (1999) Altered parallel auditory processing in schizophrenia patients. Schizophr Bull 25(3):601–607

    Google Scholar 

  • Pekkonen E et al (2002) Impaired temporal lobe processing of preattentive auditory discrimination in schizophrenia. Schizophr Bull 28(3):467–474

    Google Scholar 

  • Pfurtscheller GG, Stancák AA, Neuper CC (1996) Event-related synchronization (ERS) in the alpha band–an electrophysiological correlate of cortical idling: a review. Int J Psychophysiol 24(1–2):39–46

    Google Scholar 

  • Popov T et al (2012) Adjusting brain dynamics in schizophrenia by means of perceptual and cognitive training García AV (ed) PLoS One 7(7):e39051

    Google Scholar 

  • Popov T et al (2011) Evoked and induced oscillatory activity contributes to abnormal auditory sensory gating in schizophrenia. NeuroImage 56(1):307–314

    Google Scholar 

  • Porjesz B et al (2002) Linkage disequilibrium between the beta frequency of the human EEG and a GABAA receptor gene locus. Proc Natl Acad Sci 99(6):3729–3733

    Google Scholar 

  • Rabinowicz EF et al (2000) Auditory sensory dysfunction in schizophrenia: imprecision or distractibility? Arch Gen Psychiatry 57(12):1149–1155

    Google Scholar 

  • Rabinowitz J et al (2012) Negative symptoms have greater impact on functioning than positive symptoms in schizophrenia: analysis of CATIE data. Schizophr Res 137(1–3):147–150

    Google Scholar 

  • Reite M et al (2003) Anomalous somatosensory cortical localization in schizophrenia. Am J Psychiatry 160(12):2148–2153

    Google Scholar 

  • Reite M et al (1994) Auditory M100 component 1: relationship to Heschl’s gyri. Brain Res Cogn Brain Res 2(1):13–20

    Google Scholar 

  • Reite M et al (1989) Late auditory magnetic sources may differ in the left hemisphere of schizophrenic patients. A preliminary report. Arch Gen Psychiatry 46(6):565–572

    Google Scholar 

  • Reite M et al (1997) Magnetic source imaging evidence of sex differences in cerebral lateralization in schizophrenia. Arch Gen Psychiatry 54(5):433–440

    Google Scholar 

  • Reite M et al (1996) Magnetoencephalographic evidence of abnormal early auditory memory function in schizophrenia. Biol Psychiatry 40(4):299–301

    Google Scholar 

  • Reite M et al (2010) Schizoaffective disorder - a possible MEG auditory evoked field biomarker. Psychiatry Res Neuroimaging 182(3):284–286

    Google Scholar 

  • Reite M et al (1988) Source origin of a 50-ms latency auditory evoked field component in young schizophrenic men. Biol Psychiatry 24(5):495–506

    Google Scholar 

  • Reite M, Teale P, Rojas DC, Arciniegas D et al (1999a) Bipolar disorder: anomalous brain asymmetry associated with psychosis. Am J Psychiatry 156(8):1159–1163

    Google Scholar 

  • Reite M, Teale P, Rojas DC, Sheeder J et al (1999b) Schizoaffective disorder: evidence for reversed cerebral asymmetry. Biol Psychiatry 46(1):133–136

    Google Scholar 

  • Reulbach U et al (2007) Specific and unspecific auditory hallucinations in patients with schizophrenia: a magnetoencephalographic study. Neuropsychobiology 55(2):89–95

    Google Scholar 

  • Rockstroh B et al (2001) Altered hemispheric asymmetry of auditory magnetic fields to tones and syllables in schizophrenia. Biol Psychiatry 49(8):694–703

    Google Scholar 

  • Rockstroh B et al (2006) Electromagnetic brain activity evoked by affective stimuli in schizophrenia. Psychophysiology 43(5):431–439

    Google Scholar 

  • Rockstroh B et al (1998) Failure of dominant left-hemispheric activation to right-ear stimulation in schizophrenia. NeuroReport 9(17):3819–3822

    Google Scholar 

  • Rockstroh BS et al (2007) Abnormal oscillatory brain dynamics in schizophrenia: a sign of deviant communication in neural network? BMC Psychiatry 7:44

    Google Scholar 

  • Rojas D et al (2008) Reduced neural synchronization of gamma-band MEG oscillations in first-degree relatives of children with autism. BMC Psychiatry 8(1):66

    MathSciNet  Google Scholar 

  • Rojas DC et al (2002) Alterations in tonotopy and auditory cerebral asymmetry in schizophrenia. Biol Psychiatry 52(1):32–39

    Google Scholar 

  • Rojas DC et al (2001) Auditory evoked magnetic fields in adults with fragile X syndrome. NeuroReport 12(11):2573–2576

    Google Scholar 

  • Rojas DC et al (2000) Neuromagnetic alpha suppression during an auditory sternberg task. Evidence for a serial, self-terminating search of short-term memory. Brain Res Cogn Brain Res 10(1–2):85–89

    Google Scholar 

  • Rojas DC et al (2007) Neuromagnetic evidence of broader auditory cortical tuning in schizophrenia. Schizophr Res 97(1–3):206–214

    Google Scholar 

  • Rojas DC et al (1997) Sex-specific expression of Heschl’s gyrus functional and structural abnormalities in paranoid schizophrenia. Am J Psychiatry 154(12):1655–1662

    Google Scholar 

  • Romani GL, Williamson SJ, Kaufman L (1982) Tonotopic organization of the human auditory cortex. Science 216(4552):1339–1340

    Google Scholar 

  • Ropohl A et al (2004) Cortical activity associated with auditory hallucinations. NeuroReport 15(3):523–526

    Google Scholar 

  • Rosburg T, Kreitschmann-Andermahr I, Nowak H et al (2000a) Habituation of the auditory evoked field component N100 m in male patients with schizophrenia. J Psychiatr Res 34(3):245–254

    Google Scholar 

  • Rosburg T, Kreitschmann-Andermahr I, Ugur T et al (2000b) Tonotopy of the auditory-evoked field component N100 m in patients with schizophrenia. J Psychophysiol 14(3):131–141

    Google Scholar 

  • Ross B, Herdman AT, Pantev C (2005) Right hemispheric laterality of human 40 Hz auditory steady-state responses. Cereb Cortex (New York 1991) 15(12):2029–2039

    Google Scholar 

  • Rutter L et al (2009) Magnetoencephalographic gamma power reduction in patients with schizophrenia during resting condition. Hum Brain Mapp 30(10):3254–3264

    Google Scholar 

  • Sachdev P (1998) Schizophrenia-like psychosis and epilepsy: the status of the association. Am J Psychiatry 155(3):325–336

    Google Scholar 

  • Schmidt GL et al (2009) Absence of M100 source asymmetry in autism associated with language functioning. NeuroReport 20(11):1037–1041

    Google Scholar 

  • Schurmann M et al (2007) Manifest disease and motor cortex reactivity in twins discordant for schizophrenia. Br J Psychiatry 191:178–179

    Google Scholar 

  • Shin KS et al (2012) Neuromagnetic auditory response and its relation to cortical thickness in ultra-high-risk for psychosis. Schizophr Res 140(1–3):93–98

    Google Scholar 

  • Shin KS et al (2009) Pre-attentive auditory processing in ultra-high-risk for schizophrenia with magnetoencephalography. Biol Psychiatry 65(12):1071–1078

    Google Scholar 

  • Siekmeier PJ, Stufflebeam SM (2010) Patterns of spontaneous magnetoencephalographic activity in patients with schizophrenia. J Clin Neurophysiol: Official Publ Am Electroencephalographic Soc 27(3):179–190

    Google Scholar 

  • Smith AK et al (2010) Cognitive abilities and 50- and 100-ms paired-click processes in schizophrenia. Am J Psychiatry 167(10):1264–1275

    Google Scholar 

  • Sommer I et al (2001) Handedness, language lateralisation and anatomical asymmetry in schizophrenia: meta-analysis. Br J Psychiatry 178:344–351

    Google Scholar 

  • Sperling W et al (1999) Spontaneous slow and fast MEG activity in male schizophrenics treated with clozapine. Psychopharmacology 142(4):375–382

    Google Scholar 

  • Sperling W et al (2002) Spontaneous, slow and fast magnetoencephalographic activity in patients with schizophrenia. Schizophr Res 58(2–3):189–199

    MathSciNet  Google Scholar 

  • Sperling W, Kornhuber J, Bleich S (2003) Dipole elevations over the temporoparietal brain area are associated with negative symptoms in schizophrenia. Schizophr Res 64(2–3):187–188

    Google Scholar 

  • Streit M et al (2001) Disturbed facial affect recognition in patients with schizophrenia associated with hypoactivity in distributed brain regions: a magnetoencephalographic study. Am J Psychiatry 158(9):1429–1436

    Google Scholar 

  • Teale P et al (2008) Cortical source estimates of gamma band amplitude and phase are different in schizophrenia. NeuroImage 42(4):1481–1489

    Google Scholar 

  • Teale P et al (2000) Fine structure of the auditory M100 in schizophrenia and schizoaffective disorder. Biol Psychiatry 48(11):1109–1112

    Google Scholar 

  • Teale P et al (2003) Reduced laterality of the source locations for generators of the auditory steady-state field in schizophrenia. Biol Psychiatry 54(11):1149–1153

    Google Scholar 

  • Thoma RJ et al (2004) Auditory sensory gating deficit and cortical thickness in schizophrenia. Neurol Clin Neurophysiol NCN 2004:62

    Google Scholar 

  • Thoma RJ et al (2007) Impaired secondary somatosensory gating in patients with schizophrenia. Psychiatry Res 151(3):189–199

    Google Scholar 

  • Thoma RJ et al (2003) Lateralization of auditory sensory gating and neuropsychological dysfunction in schizophrenia. Am J Psychiatry 160(9):1595–1605

    Google Scholar 

  • Thoma RJ et al (2005) M50 sensory gating predicts negative symptoms in schizophrenia. Schizophr Res 73(2–3):311–318

    Google Scholar 

  • Thoma RJ et al (2008) Schizophrenia diagnosis and anterior hippocampal volume make separate contributions to sensory gating. Psychophysiology 45(6):926–935

    Google Scholar 

  • Thonnessen H et al (2008) Optimized mismatch negativity paradigm reflects deficits in schizophrenia patients. A combined EEG and MEG study. Biol Psychol 77(2):205–216

    Google Scholar 

  • Tiihonen J et al (1992) Modified activity of the human auditory cortex during auditory hallucinations. Am J Psychiatry 149(2):255–257

    Google Scholar 

  • Tiihonen J et al (1998) Reversal of cerebral asymmetry in schizophrenia measured with magnetoencephalography. Schizophr Res 30(3):209–219

    MathSciNet  Google Scholar 

  • Tsuang MM (2000) Schizophrenia: genes and environment. Biol Psychiatry 47(3):210–220

    Google Scholar 

  • Tsuchimoto R et al (2011) Reduced high and low frequency gamma synchronization in patients with chronic schizophrenia. Schizophr Res 133(1–3):99–105

    Google Scholar 

  • Tyrer P, Kendall T (2009) The spurious advance of antipsychotic drug therapy. Lancet 373(9657):4–5

    Google Scholar 

  • Uhlhaas PJ (2011) High-frequency oscillations in schizophrenia. Clin EEG Neurosci: Official J EEG Clin Neurosci Soc (ENCS) 42(2):77–82

    Google Scholar 

  • van Lutterveld R et al (2012) Oscillatory cortical network involved in auditory verbal hallucinations in schizophrenia. PLoS ONE 7(7):e41149

    Google Scholar 

  • Vierling-Claassen D et al (2008) Modeling GABA alterations in schizophrenia: a link between impaired inhibition and altered gamma and beta range auditory entrainment. J Neurophysiol 99(5):2656–2671

    Google Scholar 

  • Weber K et al (2009) Early life stress and psychiatric disorder modulate cortical responses to affective stimuli. Psychophysiology 46(6):1234–1243

    Google Scholar 

  • Wienbruch C et al (2003) Source distribution of neuromagnetic slow wave activity in schizophrenic and depressive patients. Clin Neurophysiol 114(11):2052–2060

    Google Scholar 

  • Wilson TW et al (2007) Aberrant functional organization and maturation in early-onset psychosis: evidence from magnetoencephalography. Psychiatry Res Neuroimaging 156(1):59–67

    Google Scholar 

  • Wilson TW et al (2009) Aberrant high-frequency desynchronization of cerebellar cortices in early-onset psychosis. Psychiatry Res 174(1):47–56

    Google Scholar 

  • Wilson TW et al (2011) Abnormal gamma and beta MEG activity during finger movements in early-onset psychosis. Dev Neuropsychol 36(5):596–613

    Google Scholar 

  • Wilson TW et al (2008) Cortical gamma generators suggest abnormal auditory circuitry in early-onset psychosis. Cereb Cortex (New York 1991) 18(2):371–378

    Google Scholar 

  • World Health Organization (1992) The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. World Health Organization, Geneva

    Google Scholar 

  • Yamasue H et al (2004) Abnormal association between reduced magnetic mismatch field to speech sounds and smaller left planum temporale volume in schizophrenia. NeuroImage 22(2):720–727

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald C. Rojas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rojas, D.C. (2014). Review of Schizophrenia Research Using MEG. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33045-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33045-2_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33044-5

  • Online ISBN: 978-3-642-33045-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics