Skip to main content

A Fresh Look at the Validity of Diffusion Equations for Modelling Phosphorescence Imaging of Biological Tissue

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7425))

Abstract

Phosphorescence lifetime imaging has become a widely used technique for tomographic oxygen imaging. The conventional model used to characterize photon transport in phosphorescence imaging is two coupled diffusion equations. On the premise that the total energy of excitation and phosphorescence photon flows must be conserved, we derive the diffusion equations in phosphorescence imaging and show that there must be an additional term to account for the transport of phosphorescent photons. This additional term accounts for the transport of phosphorescence photon energy density due to its gradients. The significance of this term in modelling phosphorescence in biological tissue is assessed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Apreleva, S.V., Wilson, D.F., Vinogradov, S.A.: Tomographic imaging of oxygen by phosphorescence lifetime. Appl. Opt. 45, 8547–8559 (2006)

    Article  Google Scholar 

  2. Arden, G.B., Sidman, R.L., Arap, W., Schlingemann, R.O.: Spare the rod and spoil the eye. Br. J. Ophthamol. 89, 764–769 (2005)

    Article  Google Scholar 

  3. Pena, F., Ramirez, A.M.: Hypoxia-induced changes in neuronal network properties. Mol. Neurobiol. 32, 251–283 (2005)

    Article  Google Scholar 

  4. Ferriero, D.M.: Medical progress-neonatal brain injury. New Eng. J. Med. 351, 1985–1995 (2004)

    Article  Google Scholar 

  5. Evans, S.M., Koch, C.J.: Prognostic significance of tumor oxygenation in humans. Cancer Lett. 195, 1–16 (2003)

    Article  Google Scholar 

  6. Vanderkooi, J.M., Maniara, G., Green, T.J., Wilson, D.F.: An optical method for measurement of dioxygen concentration based on quenching of phosphorescence. J. Biol. Chem. 262, 5476–5482 (1987)

    Google Scholar 

  7. Wilson, D.F., Vinogradov, S.A.: Handbook of Biomedical Fluorescence. Marcel Dekker (2003)

    Google Scholar 

  8. Servick-Muraca, E.M., Burch, C.L.: Origin of phosphorescence signals reemitted from tissues. Opt. Lett. 19, 1928–1930 (1994)

    Article  Google Scholar 

  9. Welch, A.J., Gemert, M.J.V.: Optical-Thermal Response of Laser-Irradiated Tissue. Plenum Press, New York (1995)

    Google Scholar 

  10. Cheong, W., Prahl, S.A., Welch, A.J.: A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 26, 2166–2185 (1990)

    Article  Google Scholar 

  11. Premaratne, M., Premaratne, E., Lowery, A.J.: The photon transport equation for turbid biological media with spatially varying isotropic refractive index. Opt. Express 13, 389–399 (2005)

    Article  Google Scholar 

  12. Handapangoda, C.C., Premaratne, M., Yeo, L., Friend, J.: Laguerre runge-kutta-fehlberg method for simulating laser pulse propagation in biological tissue. IEEE J. Sel. Top. Quantum Electron. 14, 105–112 (2008)

    Article  Google Scholar 

  13. Peraiah, A.: An Introduction to Radiative Transfer: Methods and Applications in Astrophysics. Cambridge University Press (2002)

    Google Scholar 

  14. Khan, T., Thomas, A.: On derivation of the radiative transfer equation and its spherical harmonics approximation for scattering media with spatially varying refractive indices. Technical Report TR2004-12-KT:1-49, Clemson University Mathematical Sciences (2004)

    Google Scholar 

  15. Troy, T., Thennadil, S.N.: Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm. J. Biomed. Opt. 6, 167–176 (2001)

    Article  Google Scholar 

  16. Hutchinson, C.L., Lakowicz, J.R., Sevick-Muraca, E.M.: Fluorescence lifetime-based sensing in tissues: A computational study. Biophys. J. 68, 1574–1582 (1995)

    Article  Google Scholar 

  17. Dirckx, J.J.J., Kuypers, L.C., Decraemer, W.F.: Refractive index of tissue measured with confocal microscopy. J. Biomed. Opt. 10, 044014 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Handapangoda, C.C., Premaratne, M., Nahavandi, S. (2012). A Fresh Look at the Validity of Diffusion Equations for Modelling Phosphorescence Imaging of Biological Tissue. In: Lee, G., Howard, D., Kang, J.J., Ślęzak, D. (eds) Convergence and Hybrid Information Technology. ICHIT 2012. Lecture Notes in Computer Science, vol 7425. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32645-5_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32645-5_58

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32644-8

  • Online ISBN: 978-3-642-32645-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics