Skip to main content

Numerical Analysis of Ordinary Differential Equations in Isabelle/HOL

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7406))

Abstract

Many ordinary differential equations (ODEs) do not have a closed solution, therefore approximating them is an important problem in numerical analysis. This work formalizes a method to approximate solutions of ODEs in Isabelle/HOL.

We formalize initial value problems (IVPs) of ODEs and prove the existence of a unique solution, i.e. the Picard-Lindelöf theorem. We introduce generic one-step methods for numerical approximation of the solution and provide an analysis regarding the local and global error of one-step methods.

We give an executable specification of the Euler method as an instance of one-step methods. With user-supplied proofs for bounds of the differential equation we can prove an explicit bound for the global error. We use arbitrary-precision floating-point numbers and also handle rounding errors when we truncate the numbers for efficiency reasons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boldo, S., Clément, F., Filliâtre, J.-C., Mayero, M., Melquiond, G., Weis, P.: Formal Proof of a Wave Equation Resolution Scheme: The Method Error. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 147–162. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Bornemann, V., Deuflhard, P.: Scientific computing with ordinary differential equations (2002)

    Google Scholar 

  3. Haftmann, F., Nipkow, T.: Code Generation via Higher-Order Rewrite Systems. In: Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp. 103–117. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Haftmann, F., Wenzel, M.: Local Theory Specifications in Isabelle/Isar. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds.) TYPES 2008. LNCS, vol. 5497, pp. 153–168. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Harrison, J.: Theorem Proving with the Real Numbers. Ph.D. thesis (1996)

    Google Scholar 

  6. Harrison, J.: A HOL Theory of Euclidean Space. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 114–129. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Hölzl, J.: Proving inequalities over reals with computation in Isabelle/HOL. In: Reis, G.D., Théry, L. (eds.) Programming Languages for Mechanized Mathematics Systems (ACM SIGSAM PLMMS 2009), pp. 38–45 (2009)

    Google Scholar 

  8. Immler, F., Hölzl, J.: Ordinary Differential Equations. Archive of Formal Proofs (April 2012), http://afp.sf.net/entries/Ordinary_Differential_Equations.shtml , Formal proof development

  9. Krebbers, R., Spitters, B.: Computer Certified Efficient Exact Reals in COQ. In: Davenport, J.H., Farmer, W.M., Urban, J., Rabe, F. (eds.) MKM 2011 and Calculemus 2011. LNCS (LNAI), vol. 6824, pp. 90–106. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Krebbers, R., Spitters, B.: Type classes for efficient exact real arithmetic in COQ. CoRR abs/1106.3448 (2011)

    Google Scholar 

  11. Melquiond, G.: Proving Bounds on Real-Valued Functions with Computations. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 2–17. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Muñoz, C., Lester, D.R.: Real Number Calculations and Theorem Proving. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 195–210. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Obua, S.: Flyspeck II: The Basic Linear Programs. Ph.D. thesis, München (2008)

    Google Scholar 

  14. O’Connor, R., Spitters, B.: A computer verified, monadic, functional implementation of the integral. Theoretical Computer Science 411(37), 3386–3402 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. O’Connor, R.: Certified Exact Transcendental Real Number Computation in COQ. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 246–261. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Reinhardt, H.J.: Numerik gewöhnlicher Differentialgleichungen. de Gruyter (2008)

    Google Scholar 

  17. Spitters, B.: Numerical integration in COQ, Mathematics, Algorithms, and Proofs (MAP 2010) (November 2010), www.unirioja.es/dptos/dmc/MAP2010/Slides/Slides/talkSpittersMAP2010.pdf

  18. Walter, W.: Ordinary Differential Equations, 1st edn. Springer (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Immler, F., Hölzl, J. (2012). Numerical Analysis of Ordinary Differential Equations in Isabelle/HOL. In: Beringer, L., Felty, A. (eds) Interactive Theorem Proving. ITP 2012. Lecture Notes in Computer Science, vol 7406. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32347-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32347-8_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32346-1

  • Online ISBN: 978-3-642-32347-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics