Skip to main content

Deterministic Function Computation with Chemical Reaction Networks

  • Conference paper
Book cover DNA Computing and Molecular Programming (DNA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7433))

Included in the following conference series:

Abstract

Chemical reaction networks (CRNs) formally model chemistry in a well-mixed solution. CRNs are widely used to describe information processing occurring in natural cellular regulatory networks, and with upcoming advances in synthetic biology, CRNs are a promising language for the design of artificial molecular control circuitry. Nonetheless, despite the widespread use of CRNs in the natural sciences, the range of computational behaviors exhibited by CRNs is not well understood.

CRNs have been shown to be efficiently Turing-universal when allowing for a small probability of error. CRNs that are guaranteed to converge on a correct answer, on the other hand, have been shown to decide only the semilinear predicates. We introduce the notion of function, rather than predicate, computation by representing the output of a function f:ℕk → ℕl by a count of some molecular species, i.e., if the CRN starts with x 1,…,x k molecules of some “input” species X 1,…,X k , the CRN is guaranteed to converge to having f(x 1,…,x k ) molecules of the “output” species Y 1,…,Y l . We show that a function f: ℕk → ℕl is deterministically computed by a CRN if and only if its graph { (x,y) \(\in{\mathbb N}^k \times{\mathbb N}^l\ |\) f(x) = y } is a semilinear set.

Finally, we show that each semilinear function f can be computed on input x in expected time \(O(\mathrm{polylog}\ \|{\rm x}\|_1)\).

The first author was supported by the Molecular Programming Project under NSF grant 0832824, the second and third authors were supported by a Computing Innovation Fellowship under NSF grant 1019343. The third author was supported by NIGMS Systems Biology Center grant P50 GM081879.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angluin, D., Aspnes, J., Eisenstat, D.: Fast Computation by Population Protocols with a Leader. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 61–75. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear. In: PODC, pp. 292–299 (2006)

    Google Scholar 

  3. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of population protocols. Distributed Computing 20(4), 279–304 (2007)

    Article  Google Scholar 

  4. Aspnes, J., Ruppert, E.: An introduction to population protocols. Bulletin of the European Association for Theoretical Computer Science 93, 98–117 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Cardelli, L.: Strand algebras for DNA computing. Natural Computing 10(1), 407–428 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Condon, A., Hu, A., Maňuch, J., Thachuk, C.: Less Haste, Less Waste: On Recycling and Its Limits in Strand Displacement Systems. Journal of the Royal Society Interface (to appear, 2012); In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 84–99. Springer, Heidelberg (2011)

    Google Scholar 

  7. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  8. Jiang, H., Riedel, M., Parhi, K.: Digital signal processing with molecular reactions. IEEE Design and Test of Computers (to appear, 2012)

    Google Scholar 

  9. Magnasco, M.O.: Chemical kinetics is Turing universal. Physical Review Letters 78(6), 1190–1193 (1997)

    Article  Google Scholar 

  10. Presburger, M.: Ub̈er die vollständigkeit eines gewissen systems der arithmetik ganzer zahlen. In: Welchem die Addition als einzige Operation hervortritt. Compte Rendus du I, Warsaw. Congrks des Mathematiciens des pays Slavs, pp. 92–101 (1930)

    Google Scholar 

  11. Soloveichik, D., Cook, M., Winfree, E., Bruck, J.: Computation with finite stochastic chemical reaction networks. Natural Computing 7(4), 615–633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences 107(12), 5393 (2010)

    Article  Google Scholar 

  13. Zavattaro, G., Cardelli, L.: Termination Problems in Chemical Kinetics. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 477–491. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, HL., Doty, D., Soloveichik, D. (2012). Deterministic Function Computation with Chemical Reaction Networks. In: Stefanovic, D., Turberfield, A. (eds) DNA Computing and Molecular Programming. DNA 2012. Lecture Notes in Computer Science, vol 7433. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32208-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32208-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32207-5

  • Online ISBN: 978-3-642-32208-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics