Skip to main content

Tradeoffs in the Application of Time-Reversed Acoustics to Tactile Stimulation

  • Conference paper
Haptics: Perception, Devices, Mobility, and Communication (EuroHaptics 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7282))

Abstract

The creation of active tactile surfaces through electromechanical actuation is an important problem. We describe here the application of time-reversed acoustics to the creation of deformations localized in time and in space in a stretched membrane that can be touched. We discuss the basic physical and engineering tradeoffs of this approach and describe the results obtained from an experimental mock-up device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gault, R.H.: Tactual interpretation of speech. The Scientific Monthly 22(2), 126–131 (1926)

    Google Scholar 

  2. Gault, R.H.: Recent developments in vibro-tactile research. Journal of the Franklin Institute 221, 703–719 (1936)

    Article  Google Scholar 

  3. Takasaki, M., Nara, T., Tachi, S., Higuchi, T.: A tactile display using surface acoustic wave with friction control. In: International Workshop on Micro Electro Mechanical Systems, pp. 240–243 (2001)

    Google Scholar 

  4. Takasaki, M., Kotani, H., Nara, T., Mizuno, T.: Transparent surface acoustic wave tactile display. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1115–1120 (2005)

    Google Scholar 

  5. Watanabe, T., Fukui, S.: A method for controlling tactile sensation of surface roughness using ultrasonic vibration. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1134–1139 (1995)

    Google Scholar 

  6. Winfield, L., Glassmire, J., Colgate, J.E., Peshkin, M.: T-PaD: Tactile pattern display through variable friction reduction. In: Proceedings of the Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, World Haptics 2007, pp. 421–426 (2007)

    Google Scholar 

  7. Biet, M., Giraud, F., Lemaire-Semail, B.: Squeeze film effect for the design of an ultrasonic tactile plate. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 54(12), 2678–2688 (2007)

    Article  Google Scholar 

  8. Chubb, E.C., Colgate, J.E., Peshkin, M.A.: Shiverpad: A glass haptic surface that produces shear force on a bare finger. IEEE Transactions on Haptics 3(3), 189–198 (2010)

    Article  Google Scholar 

  9. Amberg, M., Giraud, F., Semail, B.: Interface tactile vibrante transparente. French patent 1153963, Laboratoire d’électrotechnique et d’électronique de puissance (L2EP) (L2EP) (May 2011)

    Google Scholar 

  10. Strong, M.S., Troxel, D.E.: An electrotactile display. IEEE Transactions on Man-Machine Systems 11(1), 72–79 (1970)

    Article  Google Scholar 

  11. Bau, O., Poupyrev, I., Israr, A., Harrison, C.: TeslaTouch: electrovibration for touch surfaces. In: Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology, pp. 283–292 (2010)

    Google Scholar 

  12. Tang, H., Beebe, D.J.: A microfabricated electrostatic haptic display for persons with visual impairments. IEEE Transactions on Rehabilitation Engineering 6(3), 241–248 (1998)

    Article  Google Scholar 

  13. Iwamoto, T., Akaho, D., Shinoda, H.: High resolution tactile display using acoustic radiation pressure. In: Proceedings of SICE Annual Conference, pp. 1239–1244 (August 2004)

    Google Scholar 

  14. Hoshi, T., Iwamoto, T., Shinoda, H.: Non-contact tactile sensation synthesized by ultrasound transducers. In: Proceedings of the World Haptics Conference, pp. 256–260 (2009)

    Google Scholar 

  15. Fink, M.: Time reversed acoustics. Physics Today 50, 34 (1997)

    Article  Google Scholar 

  16. Montaldo, G., Tanter, M., Fink, M.: Real time inverse filter focusing through iterative time reversal. Journal of the Acoustical Society of America 115(2), 768–775 (2004)

    Article  Google Scholar 

  17. Fink, M.: Time reversal of ultrasonic fields. i. basic principles. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 39(5), 555–566 (1992)

    Article  Google Scholar 

  18. Derode, A., Tourin, A., Fink, M.: Limits of time-reversal focusing through multiple scattering: Long-range correlation. The Journal of the Acoustical Society of America 107, 2987 (2000)

    Article  Google Scholar 

  19. Quieffin, N., Catheline, S., Ing, R.K., Fink, M.: Real-time focusing using an ultrasonic one channel time-reversal mirror coupled to a solid cavity. The Journal of the Acoustical Society of America 115, 1955 (2004)

    Article  Google Scholar 

  20. Morse, P.M.C., Ingard, K.U.: Theoretical acoustics. Princeton University Press (1986)

    Google Scholar 

  21. Wiertlewski, M., Hayward, V.: Transducer for mechanical impedance testing over a wide frequency range through active feedback. Review of Scientific Instruments (in press, 2012)

    Google Scholar 

  22. Blevins, R.D.: Modal density of rectangular volumes, areas, and lines. The Journal of the Acoustical Society of America 119(2), 788 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hudin, C., Lozada, J., Wiertlewski, M., Hayward, V. (2012). Tradeoffs in the Application of Time-Reversed Acoustics to Tactile Stimulation. In: Isokoski, P., Springare, J. (eds) Haptics: Perception, Devices, Mobility, and Communication. EuroHaptics 2012. Lecture Notes in Computer Science, vol 7282. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31401-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31401-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31400-1

  • Online ISBN: 978-3-642-31401-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics