Skip to main content

Impact of the Energy Model on the Complexity of RNA Folding with Pseudoknots

  • Conference paper
Combinatorial Pattern Matching (CPM 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7354))

Included in the following conference series:

Abstract

Predicting the folding of an RNA sequence, while allowing general pseudoknots (PK), consists in finding a minimal free-energy matching of its n positions. Assuming independently contributing base-pairs, the problem can be solved in Θ(n 3)-time using a variant of the maximal weighted matching. By contrast, the problem was previously proven NP-Hard in the more realistic nearest-neighbor energy model.

In this work, we consider an intermediate model, called the stacking-pairs energy model. We extend a result by Lyngsø, showing that RNA folding with PK is NP-Hard within a large class of parametrization for the model. We also show the approximability of the problem, by giving a practical Θ(n 3) algorithm that achieves at least a 5-approximation for any parametrization of the stacking model. This contrasts nicely with the nearest-neighbor version of the problem, which we prove cannot be approximated within any positive ratio, unless P = NP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discrete Appl. Math. 104(1-3), 45–62 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alkan, C., Karakoç, E., Nadeau, J.H., Şahinalp, S.C., Zhang, K.: RNA-RNA Interaction Prediction and Antisense RNA Target Search. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 152–171. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Ashley, M.V., Berger-Wolf, T.Y., Chaovalitwongse, W., Dasgupta, B., Khokhar, A., Sheikh, S.: On Approximating an Implicit Cover Problem in Biology. In: Goldberg, A.V., Zhou, Y. (eds.) AAIM 2009. LNCS, vol. 5564, pp. 43–54. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Bindewald, E., Kluth, T., Shapiro, B.A.: Cylofold: secondary structure prediction including pseudoknots. Nucleic Acids Research 38(suppl. 2), W368–W372 (2010)

    Article  Google Scholar 

  5. Bon, M.: Prédiction de structures secondaires d’ARN avec pseudo-noeuds. Ph.D. thesis, Ecole Polytechnique (September 2009)

    Google Scholar 

  6. Cary, R.B., Stormo, G.D.: Graph-theoretic approach to RNA modeling using comparative data. In: Proceedings International Conference on Intelligent Systems for Molecular Biology, vol. 3, pp. 75–80 (1995)

    Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling under resource constraints. SIAM Journal on Computing 4(4), 397–411 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., Eddy, S.R.: Rfam: an RNA family database. Nucleic Acids Research 31(1), 439–441 (2003)

    Article  Google Scholar 

  9. Ieong, S., Kao, M.-Y., Lam, T.W., Sung, W.-K., Yiu, S.-M.: Predicting RNA secondary structures with arbitrary pseudoknots by maximizing the number of stacking pairs. Journal of Computational Biology 10(6), 981–995 (2003)

    Article  Google Scholar 

  10. Jiang, M.: Approximation algorithms for predicting RNA secondary structures with arbitrary pseudoknots. IEEE/ACM Trans. Comput. Biology Bioinform. 7(2), 323–332 (2010)

    Article  Google Scholar 

  11. Liu, C., Song, Y., Shapiro, L.: RNA Folding Including Pseudoknots: A New Parameterized Algorithm and Improved Upper Bound. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 310–322. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Lyngsø, R.B., Pedersen, C.N.: RNA pseudoknot prediction in energy-based models. J. Comput. Biol. 7(3-4), 409–427 (2000)

    Article  Google Scholar 

  13. Lyngsø, R.B.: Complexity of Pseudoknot Prediction in Simple Models. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 919–931. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Nussinov, R., Jacobson, A.: Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc. Natl. Acad. Sci. U S A 77, 6903–6913 (1980)

    Article  Google Scholar 

  15. Reidys, C.M., Huang, F.W.D., Andersen, J.E., Penner, R.C., Stadler, P.F., Nebel, M.E.: Topology and prediction of RNA pseudoknots. Bioinformatics 27(8), 1076–1085 (2011)

    Article  Google Scholar 

  16. Rivas, E., Eddy, S.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285, 2053–2068 (1999)

    Article  Google Scholar 

  17. Tabaska, J.E., Cary, R.B., Gabow, H.N., Stormo, G.D.: An RNA folding method capable of identifying pseudoknots and base triples. Bioinformatics 14(8), 691–699 (1998)

    Article  Google Scholar 

  18. Theis, C., Janssen, S., Giegerich, R.: Prediction of RNA Secondary Structure Including Kissing Hairpin Motifs. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 52–64. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Yang, H., Jossinet, F., Leontis, N., Chen, L., Westbrook, J., Berman, H., Westhof, E.: Tools for the automatic identification and classification of rna base pairs. Nucleic Acids Research 31(13), 4250–4263 (2003)

    Google Scholar 

  20. Zhao, J., Malmberg, R., Cai, L.: Rapid ab initio prediction of RNA pseudoknots via graph tree decomposition. Journal of Mathematical Biology 56, 145–159 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sheikh, S., Backofen, R., Ponty, Y. (2012). Impact of the Energy Model on the Complexity of RNA Folding with Pseudoknots. In: Kärkkäinen, J., Stoye, J. (eds) Combinatorial Pattern Matching. CPM 2012. Lecture Notes in Computer Science, vol 7354. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31265-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31265-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31264-9

  • Online ISBN: 978-3-642-31265-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics