Skip to main content

7.2 Huronian-Age Glaciation

  • Chapter
  • First Online:

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

Glaciations have occurred throughout much of Earth’s history, episodically and with different durations. Physical and chemical evidence of Earth’s earliest glacially derived rocks was reported from the c. 2.9 Ga Mozaan Group in South Africa (Young et al. 1998) and possible correlative rocks in the West Rand Group of the Witwatersrand Supergroup. No new findings of glacial rocks have been made in the Archaean since, and it remains unresolved whether the South African Archaean diamictites were locally developed or could have broader implications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen PA, Etienne JL (2008) Sedimentary challenge to snowball Earth. Nat Geosci 1:817–825

    Article  Google Scholar 

  • Altermann W, Hälbich IW (1990) Thrusting, folding and stratigraphy of the Ghaap Group along the southwestern margin of the Kaapvaal craton. S Afr J Geol 93:553–556

    Google Scholar 

  • Altermann W, Hälbich IW (1991) Structural history of the southwestern corner of the Kaapvaal craton and the adjacent Namaqua realm: new observations and reappraisal. Precambrian Res 52:133–166

    Article  Google Scholar 

  • Altermann W, Nelson DR (1998) Sedimentation rates, basin analysis and regional correlations of three Neoarchaean and Palaeoproterozoic sub-basins of the Kaapvaal craton as inferred from precise U-Pb zircon ages from volcaniclastic sediments. Sediment Geol 120:225–256

    Article  Google Scholar 

  • Amelin YuV, Heaman LM, Semenov VS (1995) U-Pb geochronology of layered mafic intrusions in the eastern Baltic Shield: implications for the timing and duration of Palaeoproterozoic continental rifting. Precambrian Res 75:31–46

    Article  Google Scholar 

  • Aspler LB, Chiarenzelli JR (1998) Two Neoarchean supercontinents? Evidence from the Paleoproterozoic. Sediment Geol 120:75–104

    Article  Google Scholar 

  • Aspler LB, Wisotzek IE, Chiarenzelli JR, Losonczy MF, Cousens BL, McNicoll VJ, Davis WJ (2001) Paleoproterozoic intracratonic processes from breakup of Kenorland to assembly of Laurentia: Hurwitz basin, Nunavut, Canada. Sediment Geol 43:287–318

    Article  Google Scholar 

  • Barley ME, Pickard AL, Sylvester PL (1997) Emplacement of a large igneous province as a possible cause of banded iron formation 2.45 billion years ago. Nature 385:55–58

    Article  Google Scholar 

  • Barton ES, Altermann W, Williams IS, Smith CB (1994) U-Pb zircon age for tuff in the Campbell Group, Griqualand West sequence, South Africa: implications for early Proterozoic rock accumulation rates. Geology 22:343–346

    Article  Google Scholar 

  • Bau M, Romer RL, Lüders V, Beukes NJ (1999) Pb, O, and C isotopes in silicified Mooidraai dolomite (Transvaal Supergroup, South Africa): implications for the composition of Paleoproterozoic seawater and “dating” the increase of oxygen in the Precambrian atmosphere. Earth Planet Sci Lett 174:43–57

    Article  Google Scholar 

  • Bekker A, Eriksson KA (1999) Paleoproterozoic record of biogeochemical events and ice ages. Geol Soc Am Abstr Progr 31:A–487

    Google Scholar 

  • Bekker A, Kaufman AJ, Karhu JA, Beukes NJ, Swart QD, Coetzee LL, Eriksson KA (2001) Chemostratigraphy of the Paleoproterozoic Duitschland Formation, South Africa: implications for coupled climate change and carbon cycling. Am J Sci 301:261–285

    Article  Google Scholar 

  • Bekker A, Kaufman AJ, Karhu JA, Eriksson KA (2005) Evidence for Paleoproterozoic cap carbonates in North America. Precambrian Res 137:167–206

    Article  Google Scholar 

  • Bell RT (1970) The Hurwitz Group – a prototype for deposition on metastable cratons. In: Baer AJ (ed) Basins and geosynclines of the Canadian Shield. Geol Surv Can Pap 70–40:159–169

    Google Scholar 

  • Bernstein L, Young GM (1990) Depositional environments of the early Proterozoic Espanola Formation, Ontario, Canada. Can J Earth Sci 27:539–551

    Article  Google Scholar 

  • Beukes NJ (1983) Paleoenvironmental setting of iron formations in the depositional basin of the Transvaal Supergroup, South Africa. In: Trendall AF, Morris RC (eds) Iron-Formation: facts and problems. Elsevier, Amsterdamm, pp 131–210

    Chapter  Google Scholar 

  • Beukes NJ (1984) Sedimentology of the Kuruman and Griquatown iron-formations, Transvaal Supergroup, Griqualand West, South Africa. Precambrian Res 24:47–84

    Article  Google Scholar 

  • Blackwelder E (1926) Pre-Cambrian geology of the Medicine Bow Mountains. Geol Soc Am Bull 37:615–658

    Google Scholar 

  • Bleeker W, Ernst R (2006) Short-lived mantle generated magmatic events and their dike swarms: the key unlocking earth’s paleogeographic reord back to 2.6 Ga. In: Hanski E, Mertanen S, Rämö T, Vuollo J (eds) Dyke swarms – time markers of crustal evolution. A.A. Balkema, Rotterdam, pp 3–26

    Chapter  Google Scholar 

  • Burke K, Dewey JF (1973) Plume-generated triple junctions: key indicators in applying plate tectonics to old rocks. J Geol 81:406–433

    Article  Google Scholar 

  • Cannon WF (1973) The Penokean orogeny in northern Michigan. In: Young GM (ed) Huronian stratigraphy and sedimentation. Geol Assoc Can, Spec Pap 12: 251–271

    Google Scholar 

  • Card KD, Innes DG, Debicki RL (1977) Stratigraphy, sedimentology and petrology of the Huronian Supergroup in the Sudbury-Espanola area. Ont Div Mines Geosci Study 16:98

    Google Scholar 

  • Catuneanu O, Eriksson PG (1999) The sequence stratigraphic concept and the Precambrian rock record: an example from the 2.7–2.1 Ga Transvaal Supergroup, Kaapvaal craton. Precambrian Res 97:215–251

    Article  Google Scholar 

  • Chandler FW (1973) Clastic dykes at Whitefish Falls and the base of the Gowganda Fomation. In: Young GM (ed) Huronian stratigraphy and sedimentation. Geol Assoc Can, Spec Pap 12: 199–209

    Google Scholar 

  • Chown EH, Gobeil A (1990) Clastic dykes of the Chibugamau Formation: distribution and origin. Can J Earth Sci 27:1111–1114

    Article  Google Scholar 

  • Christie KW, Dawidson A, Fahrig WE (1975) The paleomagnetism of the Kaminak dikes – No evidence of significant Hudsonian plate motion. Can J Earth Sci 12:2048–2064

    Article  Google Scholar 

  • Coetzee LL (2001) Genetic stratigraphy of the Paleoproterozoic Pretoria Group in the western Transvaal, M.Sc. thesis, Rand Afrikaans University, Johannesburg, p 184

    Google Scholar 

  • Coetzee LL, Beukes NJ, Gutzmer J, Kakegawa T (2006) Links of organic carbon cycling and burial to depositional depth gradients and establishment of a snowball Earth at 2.3 Ga. Evidence from the Timeball Hill Formation, Transvaal Supergroup, South Africa. S Afr J Geol 109:109–122

    Article  Google Scholar 

  • Coleman AP (1907) A lower Huronian ice age. Am J Sci 23:187–192

    Article  Google Scholar 

  • Coleman AP (1908) The lower Huronian ice age. J Geol 16:149–158

    Article  Google Scholar 

  • Cornell DH, Schütte SS, Eglington BL (1996) The Ongeluk basaltic andesite formation in Griqualand West, South Africa: submarine alteration in a 2222 Ma Proterozoic sea. Precambrian Res 79:101–123

    Article  Google Scholar 

  • Dahl PS, Hamilton MA, Wooden JL, Foland KA, Frei R, McCombs JA, Holm DK (2006) 2480 Ma mafic magnetism in the northern Black Hills, South Dakota: a new link connecting the Wyoming and Superior cratons. Can J Earth Sci 43:1579–1600

    Article  Google Scholar 

  • Daly JS, Balagansky VV, Timmerman MJ, Whitehouse MJ (2006) The Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern lithosphere. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, vol 32, Geological Society of London Memoirs. Geological Society, London, pp 561–578

    Google Scholar 

  • Eriksson PG, Bose PK, Catuneanu O, Sarkar S, Banerjee S (2008) Precambrian clastic embayments: examples from South Africa and India, In: Holmden C, Pratt BR (eds) Dynamics of epeiric seas: sedimentological, paleontological and geochemical perspectives. Geol Assoc Can, Spec Pap 48: 119–136

    Google Scholar 

  • Eriksson PG (1988) Sedimentology of the Rooihoogte Formation, Transvaal sequence. S Afr J Geol 91(4):477–489

    Google Scholar 

  • Eriksson PG, Reczko BFF (1995) The sedimentary and tectonic setting of the Transvaal Supergroup floor rocks to the Bushveld complex. J Afr Earth Sci 21:487–504

    Article  Google Scholar 

  • Eriksson PG, Altermann W (1998) An overview of the geology of the Transvaal Supergroup dolomites (South Africa). Environ Geol 36(1–2):179–188

    Google Scholar 

  • Eriksson PG, Reczko BFF (1998) Contourites associated with pelagic mudrocks and distal delta-fed turbidites in the lower Proterozoic Timeball Hill Formation epeiric basin (Transvaal Supergroup), South Africa. Sediment Geol 120:319–335

    Article  Google Scholar 

  • Eriksson PG, Reczko BFF, Merkle RKW, Schreiber UM, Engelbrecht JP, Res M, Snyman CP (1994) Early Proterozoic black shales of the Timeball Hill Formation, South Africa: volcanogenic and palaeoenvironmental influences. J Afr Earth Sci 18:325–337

    Article  Google Scholar 

  • Eriksson PG, Altermann W, Catuneanu O, van der Merwe R, Bumby AJ (2001) Major influences on the evolution of the 2.67–2.1 Ga Transvaal basin, Kaapvaal craton. Sediment Geol 141–142:205–231

    Article  Google Scholar 

  • Eriksson PG, Altermann W, Hartzer FJ (2006) The Transvaal Supergroup and its precursors. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The geology of south Africa. Geological Society of South Africa, Johannesburg and Council for Geoscience, Pretoria, pp 237–260

    Google Scholar 

  • Eskola PE (1919) Hufvudragen av Onega-Karelens geologi, Helsingin geol. Yhd. Tiedonantoja 1917 u. 1918, 13–18, and Teknikern, 1919: 37–39

    Google Scholar 

  • Evans DAD (2003) A fundamental Precambrian-Phanerozoic shift in earth’s glacial style? Tectonophysics 375:353–385

    Article  Google Scholar 

  • Evans DA, Beukes NJ, Kirschvink JL (1997) Low latitude glaciation in the Palaeoproterozoic era. Nature 386:262–266

    Article  Google Scholar 

  • Eyles N, Januszczak N (2004) ‘Zipper-rift’: a tectonic model for Neoproterozoic glaciations during the breakup of Rodinia after 750 Ma. Earth Sci Rev 65(1–2):1–73

    Article  Google Scholar 

  • Frauenstein F, Veizer J, Beukes N, van Niekerk HS, Coetzee LL (2009) Transvaal Supergroup carbonates: implications for Paleoproterozoic δ18O and δ13C records. Precambrian Res 175:149–160

    Article  Google Scholar 

  • Gair JE (1981) Lower Proterozoic glacial deposits of northern Michigan, USA. In: Hambrey MJ, Harland WB (eds) Earth’s pre-Pleistocene glacial record. Cambridge University Press, Cambridge, pp 803–806

    Google Scholar 

  • Guo Q, Strauss H, Kaufman AJ, Schröder S, Gutzmer J, Wing B, Baker MA, Bekker A, Jin Q, Kim S-T, Farquhar J (2009) Reconstructing earth’s surface oxidation across the Archean-Proterozoic transition. Geology 37:399–402

    Article  Google Scholar 

  • Hälbich IW, Scheepers R, Lamprecht DF, van Deventer JL, De Kock NJ (1993) The Transvaal-Griqualand West banded iron formation: geology, genesis, iron exploitation. J Afr Earth Sci 16:63–120

    Article  Google Scholar 

  • Halls HC, Bates MP (1990) The evolution of the 2.45 Ga Matachewan dyke swarm, Canada. In: Parker AJ, Rickwood PC, Tucker DH (eds) Mafic dykes and emplacement mechanism. Balkema, Rotterdam, pp 237–250

    Google Scholar 

  • Hambrey MJ, Harland WB (1981) Earth’s pre-Pleistocene glacial record. Cambridge University Press, Cambridge, p 1004

    Google Scholar 

  • Hamilton J (1977) Sr isotope and trace element studies of the Great Dyke and Bushveld mafic phase and their relation to early Proterozoic magma genesis in southern Africa. J Petrol 18:24–52

    Google Scholar 

  • Hannah JL, Bekker A, Stein HJ, Markey RJ, Holland HD (2004) Primitive Os and 2316 Ma age for marine shale: implications for Paleoproterozoic glacial events and the rise of atmospheric oxygen. Earth Planet Sci Lett 225:43–52

    Article  Google Scholar 

  • Hanski E, Huhma H, Vaasjoki M (2001) Geochronology of northern Finland: a summary and discussion. In: Vaasjoki M (ed) Radiometric age determination from Finnish Lapland and their bearing on the timing of Precambrian volcano-sedimentary sequences. Geol Surv Finl Spec Pap 33:255–279

    Google Scholar 

  • Heaman LM (1997) Global mafic volcanism at 2.45 Ga: remnants of an ancient large igneous province? Geology 25:299–302

    Article  Google Scholar 

  • Hoffman PF, Schrag P (2000) Snowball earth. Sci Am 282:68–75

    Article  Google Scholar 

  • Hoffman PF, Schrag DP (2002) The snowball earth hypothesis: testing the limits of global change. Terra Nova 14:129–155

    Article  Google Scholar 

  • Houston RS, Lanthier LR, Karlstrom KK, Sylvester G (1981) Early Proterozoic diamictites of southern Wyoming. In: Hambrey MJ, Harland WB (eds) Earth’s pre-Pleistocene glacial record. Cambridge University Press, Cambridge, pp 795–799

    Google Scholar 

  • Houston RS, Kalstrom KE, Graff PJ, Flurkey AJ (1992) New stratigraphic subdivisions and redefinitions of subdivisions of Late Archean and Early Proterozoic metasedimentary and metavolcanic rocks of the Sierra Madre and Medicine Bow Mountains, southern Wyoming. U.S. Geol Surv Prof Pap 1520: 50

    Google Scholar 

  • James HL (1958) Stratigraphy of pre-Keweenawan rocks in parts of northern Michigan. United States Geol Surv Prof Pap 314-C: 27–44

    Google Scholar 

  • Jones DL, Robertson DM, McFadden PL (1975) A palaeomagnetic study of Precambrian dyke swarms associated with the Great Dyke of Rodesia. Trans Geol Soc S Afr 78:57–65

    Google Scholar 

  • Junnila RM, Young GM (1995) The Paleoproterozoic upper Gowganda Formation, Whitefish Falls area, Ontario, Canada: subaqueous deposits of a braid delta. Can J Earth Sci 32:197–209

    Article  Google Scholar 

  • Karlstrom KE, Flurkey AT, Houston RS (1984) Stratigraphy and depositional setting of Proterozoic metasedimentary rocks of southeastern Wyoming: record of an early Proterozoic Atlantic-type cratonic margin. Geol Soc Am Bull 94:1257–1294

    Article  Google Scholar 

  • Kasting JE (2004) When methane made climate. Sci Am 291:78–85

    Article  Google Scholar 

  • Kasting JE (2005) Methane and climate during the Precambrian era. Precambrian Res 137:119–129

    Article  Google Scholar 

  • Kirschvink JL, Gaidos EJ, Bertani E, Beukes NJ, Gutzmer J, Maepa LN, Steinberger RE (2000) Paleoproterozoic snowball earth: extreme climatic and geochemical global change and its biological consequences. Proc Natl Acad Sci 7:1400–1405

    Article  Google Scholar 

  • Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball earth: a climatic disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci USA 102:11131–11136

    Article  Google Scholar 

  • Kurtz DD (1981) Early Proterozoic diamictites of the Black Hills, South Dakota. In: Hambrey MJ, Harland WB (eds) Earth’s pre-Pleistocene glacial record. Cambridge University Press, Cambridge, pp 800–802

    Google Scholar 

  • Lahtinen R, Garde AA, Melezhik VA (2008) Paleoproterozoic evolution of Fennoscandia and Greenland. Episodes 31:20–28

    Google Scholar 

  • Lindsey DA (1969) Glacial sedimentation of the Precambrian Gowganda Formation, Ontario, Canada. Geol Soc Am Bull 80:1685–1704

    Article  Google Scholar 

  • Long DGF (1974) Glacial and paraglacial genesis of conglomeratic rocks of the Chibougamau Formation (Aphebian), Chibougamau, Quebec. Can J Earth Sci 11:1236–1252

    Article  Google Scholar 

  • Long DGF (1981) Glaciogenic rocks in the early Proterozoic Chibougamau Formation of northern Quebec. In: Hambrey MJ, Harland WB (eds) Earth’s pre-Pleistocene glacial record. Cambridge University Press, Cambridge, pp 817–820

    Google Scholar 

  • Long DGF (2004) The tectonostratigraphic evolution of the Huronian basement and subsequent basin fill: geological constraints on impact models of the Sudbury event. Precambrian Res 129:203–223

    Article  Google Scholar 

  • Mapeo RBM, Armstrong RA, Kampunzu AB, Modisi MP, Ramokate LV, Modie BNJ (2006) A ca. 200 Ma hiatus between the lower and upper Transvaal Groups of southern Africa: SHRIMP U-Pb detrital zircon evidence from the Segwagwa Group, Botswana: implications for Palaeoproterozoic glaciations. Earth Planet Sci Lett 244:113–132

    Article  Google Scholar 

  • Marmo J, Kohonen J, Sarapää O, Äikäs O (1986) Sedimentology, and stratigraphy of the lower Proterozoic Sariola and Jatuli groups in the Koli-Kaltimo area, eastern Finland. In: Laajoki K, Paakkola J (eds) Geol Surv Finl, Spec Pap 5: 11–28

    Google Scholar 

  • Marmo JS, Ojakangas RW (1984) Lower Proterozoic glaciogenic deposits, eastern Finland. Geol Soc Am Bull 98:1055–1062

    Article  Google Scholar 

  • Martin DMcB (1999) Depositional setting and implications of Paleoproterozoic glaciomarine sedimentation in the Hamersley Province, Western Australia. Geol Soc Am Bull 111:189–203

    Article  Google Scholar 

  • Martin DMcB, Li ZX, Nemchin AA, Powell CM (1998a) A pre-2.2 Ga age for giant hematite ores of the Hamersley Province, Australia. Econ Geol 93:1084–1090

    Article  Google Scholar 

  • Martin DMcB, Clendenin CW, Krapez B, McNaughton NJ (1998b) Tectonic and geochronological constraints on late Archaean and Palaeoproterozoic stratigraphic correlation within and between the Kaapvaal and Pilbara cratons. J Geol Soc Lond 155:311–322

    Article  Google Scholar 

  • Martini JEJ (1977) A copper-bearing horizon in the Pretoria Group in the north-eastern Transvaal, Abstracts, Geocongress 77, Johannesburg, South Africa. Geological Society of South Africa, Johannesburg, pp 57–59

    Google Scholar 

  • Martini JEJ (1979) A copper-bearing bed in the Pretoria Group in Northeastern Transvaal. Geol Soc S Afr Spec, Pub 6:65–72

    Google Scholar 

  • Melezhik VA (2006) Multiple causes of earth’s earliest global glaciation. Terra Nova 18:130–137

    Article  Google Scholar 

  • Melezhik VA, Fallick AE (1996) A widespread positive δ13Ccarb anomaly at around 2.33–2.06 Ga on the Fennoscandian Shield: a paradox? Terra Nova 8:141–157

    Article  Google Scholar 

  • Melezhik VA, Sturt BA (1994) General geology and evolutionary history of the early Proterozoic Polmak-Pasvik-Pechenga-Imandra/Varzuga-Ust’Ponoy Greenstone Belt in the north-eastern Baltic Shield. Earth Sci Rev 36:205–241

    Article  Google Scholar 

  • Mertanen S, Halls HC, Vuollo JL, Pesonen LJ, Stepanov VS (1999) Paleomagnetism of 2.44 Ga mafic dykes in Russian Karelia, eastern Fennoscandian Shield – implications for continental reconstructions. Precambrian Res 98:197–221

    Article  Google Scholar 

  • Miall AD (1983) Glaciomarine sedimentation in the Gowganda Formation (Huronian), northern Ontario. J Sediment Res 53:477–491

    Google Scholar 

  • Moore JM, Tsikos H, Polteau S (2001) Deconstructing the Transvaal Supergroup, South Africa: implications for Palaeoproterozoic palaeoclimate models. J Afr Earth Sci 33:437–444

    Article  Google Scholar 

  • Morey GB (1973) Stratigraphic framework of Middle Precambrian rocks in Minnesota. In: Young GM (ed) Huronian stratigraphy and sedimentation. Geol Assoc Can Spec Pap 12: 211–249

    Google Scholar 

  • Negrutza VZ (1984) Early Proterozoic stages of evolution of the eastern Baltic Shield. Nedra, Leningrad, p 270 (in Russian)

    Google Scholar 

  • Negrutsa TF, Negrutsa VZ (1981a) Early Proterozoic Yanis-Järvi tilloids, South Karelia, USSR. In: Hambrey MJ, Harland WB (eds) Earth’s pre-Pleistocene glacial record. Cambridge University Press, Cambridge, pp 681–682

    Google Scholar 

  • Negrutsa TF, Negrutsa VZ (1981b) Early Proterozoic Sarioli tilloids in the eastern part of the Baltic Shield, USSR. In: Hambrey MJ, Harland WB (eds) Earth’s pre-Pleistocene glacial record. Cambridge University Press, Cambridge, pp 683–686

    Google Scholar 

  • Nelson DR, Trendall AF, Altermann W (1999) Chronological correlations between the Pilbara and Kaapvaal cratons. Precambrian Res 97:165–189

    Article  Google Scholar 

  • Ojakangas RW (1985) Evidence for early Proterozoic glaciation: the dropstone unit-diamictite association. In: Laajoki K, Paakkola J (eds) Proterozoic exogenic processes and related metallogeny. Geol Surv Finl Bull 331: 51–72

    Google Scholar 

  • Ojakangas RW (1988) Glaciation: an uncommon mega-event as a key to intracontinental and intercontinental correlation of early Proterozoic basin fill, North American and Baltic cratons. In: Kleinspehn KL, Paola C (eds) New perspectives in basin analysis. Springer, Berlin, pp 431–444

    Chapter  Google Scholar 

  • Ojakangas RW, Marmo JS, Heiskanen KI (2001a) Basin evolution of the Paleoproterozoic Karelian Supergroup of the Fennoscandian (Baltic) Shield. Sediment Geol 141–142:255–285

    Article  Google Scholar 

  • Ojakangas RW, Morey GB, Southwick DL (2001b) Paleoproterozoic basin development and sedimentation in the Lake Superior region, North America. Sediment Geol 141–142:319–342

    Article  Google Scholar 

  • Pettijohn FJ (1943) Basal Huronian conglomerates of Menominee and Calumet districts, Michigan. J Geol 51:387–397

    Article  Google Scholar 

  • Pettijohn FJ (1970) The Canadian Shield – a status report, 1970. In: Baer AJ (ed) Basins and geosynclines of the Canadian Shield. Geol Surv Can, Pap 70–40: 239–255

    Google Scholar 

  • Papineau D, Mojzsis SJ, Coath CD, Karhu JA, Keegan KD (2005) Multiple sulfur isotopes of sulfides from sediments in the aftermath of Paleoproterozoic glaciations. Geochem Cosmochim Acta 69:188–212

    Article  Google Scholar 

  • Papineau D, Mojzsis SJ, Schmitt AK (2007) Multiple sulfur isotopes from Paleoproterozoic Huronian interglacial sediments and the rise of atmospheric oxygen. Earth Planet Sci Lett 255:188–212

    Article  Google Scholar 

  • Pavlov AA, Kasting JF (2000) Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astobiology 2:27–41

    Article  Google Scholar 

  • Pickard AL (2003) SHRIMP U-Pb zircon ages for the Palaeoproterozoic Kurumn Iron Formation, Northern Cape Province, South Africa: evidence for simultaneous BIF deposition on Kaapvaal and Pilbara cratons. Precambrian Res 125:275–315

    Article  Google Scholar 

  • Polteau S, Moore JM, Tsikos H (2006) The geology and geochemistry of the Palaeoproterozoic Makganyene diamictite. Precambrian Res 148:257–274

    Article  Google Scholar 

  • Potgieter GJ (1992) Tektonisme langs die noordoostelike rand van die Bosveldkompleks, Suid-Afrika, Ph.D. thesis, University of Pretoria, South Africa, p 214

    Google Scholar 

  • Puchtel IS, Hofmann AW, Mezger K, Schipansky AA, Kulikov VS, Kulikova VV (1996) Petrology of a 2.41 Ga remarkably fresh komatiitic basalt lava lake in Lion Hills, central Vetreny Belt, Baltic Shield. Contrib Miner Petrol 124:273–290

    Article  Google Scholar 

  • Puchtel IS, Haase KM, Hofmann AW, Chauvel C, Kulikov VS, Garbe-Schönberg C-D, Nemchin AA (1997) Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Shield: evidence for an early Proterozoic mantle plume beneath rifted Archean continental lithosphere. Geochim Cosmochim Acta 61:1205–1222

    Article  Google Scholar 

  • Puffett WP (1969) The Reany Creek Formation, Marquette County, Michigan. US Geol Surv Bull 1274:25p

    Google Scholar 

  • Rainbird RH, Donaldson JA (1988) Nonglaciogenic deltaic deposits in the early Proterozoic Gowganda Formation, Cobalt Basin, Ontario. Can J Earth Sci 25:710–724

    Article  Google Scholar 

  • Robertson JA (1964) Geology of Scarfe, Mack, Cobden, and Striker township. Ont Dept Mines Geol Rep 20:1–89

    Google Scholar 

  • Robertson JA (1986) Geology of township 149 and township 150. Ontario Dept Mines, Geol Rep 57:1–162

    Google Scholar 

  • Roscoe SM (1969) Huronian rocks and uraniferous conglomerates in the Canadian shield. Geol Surv Can Pap 68–40:205

    Google Scholar 

  • Roscoe SM, Card KD (1993) The reappearance of the Huronian in Wyoming: rifting and drifting of ancient continents. Can J Earth Sci 30:2475–2480

    Article  Google Scholar 

  • Reuschel M, Strauss H, Lepland A, Melezhik VA, Cartigny P, Kaufman AJ (2009) Multiple sulfur isotope measurements from the 2.44 Ga Seidorechka Sedimentary Formation. Geochim Cosmochim Acta 73:A1091

    Google Scholar 

  • Salop LJ (1983) Geological evolution of the earth during the Precambrian. Springer, Berlin, p 459

    Book  Google Scholar 

  • Schenk PE (1965) Precambrian glaciated surface beneath the Gowganda Formation, Lake Timagami, Ontario. Science 149:176–177

    Article  Google Scholar 

  • Shields GA (2005) Neoproterozoic cap carbonates: a critical appraisal of existing models and the plumeworld hypothesis. Terra Nova 17:299–310

    Article  Google Scholar 

  • Sims PK, Peterman ZE (1983) Evolution of Penokean foldbelt, Lake Superior region, and its tectonic environment. In: Medaris LG Jr (ed) Early Proterozoic geology of the Great lakes region. Geol Soc Am, Memoir160: 3–14

    Google Scholar 

  • Strand KO, Laajoki K (1993) Palaeoproterozoic glaciomarine sedimentation in an extensional tectonic setting: the Honkala Formation, Finland. Precambrian Res 64:253–271

    Article  Google Scholar 

  • Sturt BA, Melezhik VA, Ramsay DM (1994) Early Proterozoic regolith at Pasvik, NE Norway: palaeotectonical implications for the Baltic Shield. Terra Nova 6:618–633

    Article  Google Scholar 

  • Sumner DY, Bowring SA (1996) U-Pb geochronologic constraints on deposition of the Campbellrand Subgroup, Transvaal Supergroup, South Africa. Precambrian Res 79:25–36

    Article  Google Scholar 

  • Thomson R (1957) The Proterozoic of the Cobalt area. Roy Soc Can Special Pub 2:40–45

    Google Scholar 

  • Trendall AF (1976) Striated and faceted boulders from the Turee Creek Formation – evidence for a possible Huronian glaciation on the Australian continent. Geol Surv West Austr, Ann Rep, 1975: 88–92

    Google Scholar 

  • Trendall AF (1979) A revision of the Mount Bruce Supergroup. Geol Surv West Austr, Ann Rep, 1978: 63–71

    Google Scholar 

  • Trendall AF, Compston W, Williams IS, Armstrong RA, Arndt NT, McNaughton NJ, Nelson DR, Barley ME, Beukes NJ, De Laeter JR, Retief EA, Thorne AM (1990) Chronological comparison of the volcano-sedimentary sequences of the Kaapvaal and Pilbara cratons between 3.2 and 2.4 Ga, Abstract, Third Archaean Symposium, Perth, p 81–83

    Google Scholar 

  • Trendall AF, De Later JR, Nelson DR (1995) Chronology of Gondwana BIFs: progress report from recent zircon U-Pb results, Abstract, Third Australian Conference on Geochronology, Perth, pp 1–3

    Google Scholar 

  • Vallini DA, Cannon WF, Schulz KJ (2006) Age constraints for Paleoproterozoic glaciation in the Lake Superior region: detrital zircon and hydrothermal xenotime ages for the Chocolay Group, Marquette Range Supergroup. Can J Earth Sci 43:571–591

    Article  Google Scholar 

  • Vajner V (1974) The tectonic development of the Namaqua mobile belt and its foreland in parts of the Northern Cape. Precambrian Research Unit Bulletin, vol 14. University of Cape Town, p 201

    Google Scholar 

  • Van Schmus WR (1976) Early and middle Proterozoic history of the Great lakes area, North America, Royal Society of London Philosophical Transactions, Ser A2280, No. 1298: 605–628

    Google Scholar 

  • Veizer J, Clayton RN, Hinton RW (1992) Geochemistry of Precambrian carbonates: IV. Early Paleoroterozzoic (2.25 ± 0.25 Ga) seawater. Geochim Cosmochim Acta 56:875–885

    Article  Google Scholar 

  • Visser JNJ (1971) The deposition of the Griquatown glacial member in the Transvaal Supergroup. Trans Geol Soc S Afr 74:187–199

    Google Scholar 

  • Visser JNJ (1999) Lithostratigraphy of the Makganyene Formation (Postmasburg Group). S Afr Comm Stratigr, Lithostratigr Ser 34:1–7

    Google Scholar 

  • Vogel DC, Vuollo JI, Alapieti TT, James RS (1998) Tectonic, stratigraphic, and geochemical comparison between ca. 2500–2440 Ma mafic igneous events in the Canadian and Fennoscandian Shields. Precambrian Res 92:89–116

    Article  Google Scholar 

  • Walraven F, Martini J (1995) Zircon Pb-evaporation age determinations of the Oak Tree Formation, Chuniespoort Group, Transvaal Sequence: implications for Transvaal-Griqualand West basin correlations. S Afr J Geol 98:58–67

    Google Scholar 

  • Wanless RK, Eade KE (1975) Geochronology of Archean and Proterozoic rocks in the southern district of Keewatin. Can J Earth Sci 12:95–114

    Article  Google Scholar 

  • Whitmeyer SJ, Karlstrom KE (2007) Tectonic model for the Proterozoic growth of North America. Geosphere 3:220–259

    Article  Google Scholar 

  • Williams GE, Schmidt PW (1997) Paleomagnetism of the Paleoproterozoic Gowganda and Lorrain formations, Ontario: low paleolatitudes for Huronian glaciation. Earth Planet Sci Lett 153:157–169

    Article  Google Scholar 

  • Williams H, Hoffman PF, Lewry JF, Monger JWH, Rivers T (1991) Anatomy of North America: thematic geologic portraits of the continent. Tectonophysics 187:117–134

    Article  Google Scholar 

  • Young GM (1966) Huronian stratigraphy of the McGregor Bay area, Ontario: relevance to the paleogeography of the Lake Superior area. Can J Earth Sci 3:203–210

    Article  Google Scholar 

  • Young GM (1968) Sedimentary structures in Huronian rocks of Ontario. Palaeogeogr Palaeocl Palaeoecol 4:125–153

    Article  Google Scholar 

  • Young GM (1970) An extensive early Proterozoic glaciation in North America. Palaeogeogr Palaeocl Palaeoecol 7:85–100

    Article  Google Scholar 

  • Young GM (1973) Origin of carbonate-rich early Proterozoic Espanola Formation, Ontario, Canada. Geol Soc Am Bull 84:135–160

    Article  Google Scholar 

  • Young GM (1975) Geochronology of Archean and Proterozoic rocks in the southern district of Keewatin: discussion. Can J Earth Sci 12:1250–1254

    Article  Google Scholar 

  • Young GM (1981a) Diamictites of the early Proterozoic Ramsey Lake and Bruce Formations, north shore of Lake Huron, Ontario, Canada. In: Hambrey MJ, Harland WB (eds) Earth’s pre-Pleistocene glacial record. Cambridge University Press, Cambridge, pp 813–816

    Google Scholar 

  • Young GM (1981b) The early Proterozoic Gowganda Formation, Ontario, Canada. In: Hambrey MJ, Harland WB (eds) Earth’s pre-Pleistocene glacial record. Cambridge University Press, Cambridge, pp 807–812

    Google Scholar 

  • Young GM (1983) Tectono-sedimentary history of early Proterozoic rocks of the northern Great lakes region. In: Medaris LG Jr (ed) Early Proterozoic geology of the Great lakes region. Geol Soc Am Memoir 160: 15–32

    Google Scholar 

  • Young GM (1988) Proterozoic plate tectonics, glaciations and iron-formations. Sediment Geol 58:127–144

    Article  Google Scholar 

  • Young GM (1991) The geological record of glaciation: relevance to the climatic history of the earth. Geosci Can 18:100–108

    Google Scholar 

  • Young GM (2002) Stratigraphic and tectonic settings of Proterozoic glaciogenic rocks and banded iron-formations; relevance to the snowball earth debate. J Afr Earth Sci Middle East 35:451–466

    Article  Google Scholar 

  • Young GM (2004) Earth’s earliest extensive glaciations: tectonic setting and stratigraphic context of Paleoproterozoic glaciogenic deposits. In: Jenkins GS, McMenamin MAS, McKay CP, Sohl L (eds) The extreme Proterozoic: geology, geochemistry and climate. American Geophysical Union, Washington, DC. Geophys Monogr146: 161–181

    Google Scholar 

  • Young GM, Church WR (1966) The Huronian system in the Sudbury district and adjoining areas of Ontario: a review. Proc Geol Assoc Can 17:65–82

    Google Scholar 

  • Young GM, Long DGF (1976) Ice-wedge casts from the Huronian Ramsay Lake Formation (>2300 m.y. old) near Espanola, Ontario, Canada. Palaeogeogr Palaeocl Palaeoecol 19:191–200

    Article  Google Scholar 

  • Young GM, McLennan SM (1981) Early Proterozoic Padlei Formation, Northwest Territories, Canada. In: Hambrey MJ, Harland WB (eds) Earth’s pre-Pleistocene glacial record. Cambridge University Press, Cambridge, pp 790–794

    Google Scholar 

  • Young GM, Long DGF, Fedo CH, Nesbitt HW (2001) The Paleoproterozoic Huronian basin: product of a Wilson cycle accompanied by Glaciation and Meteorite impact. Sediment Geol 141–142:233–254

    Article  Google Scholar 

  • Young GM, Nesbitt HW (1985) The Gowganda Formation in the southern part of the Huronian outcrop belt, Canada: stratigraphy, depositional environments and regional tectonic significance. Precambrian Res 29:265–301

    Article  Google Scholar 

  • Young GM, von Brunn V, Gold DJC, Minter WEL (1998) Earth’s oldest reported glaciation: physical and chemical evidence from the Archean Mozaan Group (2.9 Ga) of South Africa. J Geol 106:523–538

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. Melezhik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melezhik, V.A., Young, G.M., Eriksson, P.G., Altermann, W., Kump, L.R., Lepland, A. (2013). 7.2 Huronian-Age Glaciation. In: Melezhik, V., et al. Reading the Archive of Earth’s Oxygenation. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29670-3_2

Download citation

Publish with us

Policies and ethics