Skip to main content

Decidability Classes for Mobile Agents Computing

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7256))

Abstract

We establish a classification of decision problems that are to be solved by mobile agents operating in unlabeled graphs, using a deterministic protocol. The classification is with respect to the ability of a team of agents to solve the problem, possibly with the aid of additional information. In particular, our focus is on studying differences between the decidability of a decision problem by agents and its verifiability when a certificate for a positive answer is provided to the agents. Our main result shows that there exists a natural complete problem for mobile agent verification. We also show that, for a single agent, three natural oracles yield a strictly increasing chain of relative decidability classes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM Journal on Computing 29, 1164–1188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Angluin, D.: Local and global properties in networks of processors. In: STOC 1980, pp. 82–93 (1980)

    Google Scholar 

  3. Alpern, S.: Rendezvous search on labelled networks. Naval Research Logistics 49, 256–274 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alpern, S., Gal, S.: The theory of search games and rendezvous. Int. Series in Operations research and Management Science. Kluwer Academic Publisher (2002)

    Google Scholar 

  5. Alpern, J., Baston, V., Essegaier, S.: Rendezvous search on a graph. Journal of Applied Probability 36, 223–231 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: SoCG 1998, pp. 365–373 (1998)

    Google Scholar 

  7. Bender, M.A., Slonim, D.K.: The power of team exploration: Two robots can learn unlabeled directed graphs. In: FOCS 1994, pp. 75–85 (1994)

    Google Scholar 

  8. Boldi, P., Vigna, S.: Computing Anonymously with Arbitrary Knowledge. In: PODC 1999, pp. 181–188 (1999)

    Google Scholar 

  9. Boldi, P., Vigna, S.: An Effective Characterization of Computability in Anonymous Networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 33–47. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Boldi, P., Vigna, S.: Fibrations of graphs. Disc. Maths 243(1-3), 21–66 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chalopin, J., Das, S., Kosowski, A.: Constructing a Map of an Anonymous Graph: Applications of Universal Sequences. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 119–134. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Chalopin, J., Godard, E., Métivier, Y.: Local Terminations and Distributed Computability in Anonymous Networks. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 47–62. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the Robots Gathering Problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Collins, A., Czyzowicz, J., Gąsieniec, L., Labourel, A.: Tell Me Where I Am So I Can Meet You Sooner. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 502–514. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. In: SODA 2010, pp. 22–30 (2010)

    Google Scholar 

  16. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: Log-space rendezvous in arbitrary graphs. In: PODC 2010, pp. 450–459 (2010)

    Google Scholar 

  17. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: On the computational power of oblivious robots: forming a series of geometric patterns. In: PODC 2010, pp. 267–276 (2010)

    Google Scholar 

  18. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed Verification and Hardness of Distributed Approximation. In: STOC 2011, pp. 363–372 (2011)

    Google Scholar 

  19. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. Journal of Graph Theory 32, 265–297 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of Asynchronous Oblivious Robots with Limited Visibility. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 247–258. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. Fraigniaud, P., Ilcinkas, D.: Digraphs Exploration with Little Memory. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 246–257. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Fraigniaud, P., Korman, A., Peleg, D.: Local Distributed Decision. In: FOCS 2011, pp. 708–717 (2011)

    Google Scholar 

  24. Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration. Networks 48, 166–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Fraigniaud, P., Pelc, A.: Deterministic Rendezvous in Trees with Little Memory. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and Checkability in Wait-free Computing. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 333–347. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  27. Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. In: SODA 2007, pp. 585–594 (2007)

    Google Scholar 

  28. Goos, M., Suomela, J.: Locally checkable proofs. In: PODC 2011, pp. 159–168 (2011)

    Google Scholar 

  29. Korman, A., Kutten, S., Peleg, D.: Proof Labeling Schemes. Distributed Computing 22, 215–233 (2010)

    Article  Google Scholar 

  30. Kowalski, D., Malinowski, A.: How to Meet in Anonymous Network. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 44–58. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  31. Kranakis, E., Krizanc, D., Morin, P.: Randomized Rendez-Vous with Limited Memory. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 605–616. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  32. Norris, N.: Universal covers of graphs: Isomorphism to depth n − 1 implies isomorphism to all depths. Discrete Applied Mathematics 56, 61–74 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Reingold, O.: Undirected connectivity in log-space. JACM 55, 1–24 (2008)

    Article  MathSciNet  Google Scholar 

  35. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly universal exploration sequences. In: SODA 2007, pp. 599–608 (2007)

    Google Scholar 

  36. Yamashita, M., Kameda, T.: Computing on Anonymous Networks: Part I-Characterizing the Solvable Cases. IEEE Trans. Par. Distrib. Syst. 7, 69–89 (1996)

    Article  Google Scholar 

  37. Yamashita, M., Kameda, T.: Computing Functions on Asynchronous Anonymous Networks. Mathematical Systems Theory 29(4), 331–356 (1996)

    MathSciNet  MATH  Google Scholar 

  38. Yamashita, M., Kameda, T.: Leader Election Problem on Networks in which Processor Identity Numbers Are Not Distinct. IEEE Trans. Parallel Distrib. Syst. 10(9), 878–887 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fraigniaud, P., Pelc, A. (2012). Decidability Classes for Mobile Agents Computing. In: Fernández-Baca, D. (eds) LATIN 2012: Theoretical Informatics. LATIN 2012. Lecture Notes in Computer Science, vol 7256. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29344-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29344-3_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29343-6

  • Online ISBN: 978-3-642-29344-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics