Skip to main content

White Box Classification of Dissimilarity Data

  • Conference paper
Hybrid Artificial Intelligent Systems (HAIS 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7208))

Included in the following conference series:

Abstract

While state-of-the-art classifiers such as support vector machines offer efficient classification for kernel data, they suffer from two drawbacks: the underlying classifier acts as a black box which can hardly be inspected by humans, and non-positive definite Gram matrices require additional preprocessing steps to arrive at a valid kernel. In this approach, we extend prototype-based classification towards general dissimilarity data resulting in a technology which (i) can deal with dissimilarity data characterized by an arbitrary symmetric dissimilarity matrix, (ii) offers intuitive classification in terms of prototypical class representatives, and (iii) leads to state-of-the-art classification results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, A., Corchado, E., Corchado, J.M.: Hybrid learning machines. Neurocomputing 72(13-15), 2729–2730 (2009)

    Article  Google Scholar 

  2. Barbuddhe, S.B., Maier, T., Schwarz, G., Kostrzewa, M., Hof, H., Domann, E., Chakraborty, T., Hain, T.: Rapid identification and typing of listeria species by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Applied and Environmental Microbiology 74(17), 5402–5407 (2008)

    Article  Google Scholar 

  3. Biehl, M., Ghosh, A., Hammer, B.: Dynamics and generalization ability of LVQ algorithms. J. Machine Learning Res. 8, 323–360 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M.-C., Estreicher, A., Gasteiger, E., Martin, M.J., Michoud, K., O’Donovan, C., Phan, I., Pilbout, S., Schneider, M.: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003)

    Article  Google Scholar 

  5. Chan, A., Vasconcelos, N., Lanckriet, G.: Direct Convex Relaxations of Sparse SVM. In: Proc. of ICML 2007 (2007)

    Google Scholar 

  6. Chen, Y., Garcia, E.K., Gupta, M.R., Rahimi, A., Cazzanti, L.: Similarity-based Classification: Concepts and Algorithms. J. of Machine Learning Res. 10, 747–776 (2009)

    MathSciNet  Google Scholar 

  7. Corchado, E., Abraham, A., Carvalho, A.: Hybrid intelligent algorithms and applications. Information Sciences 180(14), 2633–2634 (2010)

    Article  MathSciNet  Google Scholar 

  8. Crammer, K., Gilad-Bachrach, R., Navot, A., Tishby, N.: Margin Analysis of the LVQ Algorithm. In: Proc. of NIPS 2002 (2003)

    Google Scholar 

  9. Denecke, A., Wersing, H., Steil, J.J., Koerner, E.: Online Figure-Ground Segmentation with Adaptive Metrics in Generalized LVQ. Neurocomputing 72(7-9), 1470–1482 (2009)

    Article  Google Scholar 

  10. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D., Bairoch, A.: ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788 (2003)

    Article  Google Scholar 

  12. Haasdonk, B., Bahlmann, C.: Learning with Distance Substitution Kernels. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 220–227. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Hammer, B., Hasenfuss, A.: Topographic Mapping of Large Dissimilarity Data Sets. Neural Computation 22(9), 2229–2284 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ingram, P.J., Stumpf, M.P.H., Stark, J.: Network motifs: structure does not determine function. BMC Genomics 7, 108 (2006)

    Article  Google Scholar 

  15. Kietzmann, T., Lange, S., Riedmiller, M.: Incremental GRLVQ: Learning Relevant Features for 3D Object Recognition. Neurocomputing 71(13-15), 2868–2879 (2008)

    Article  Google Scholar 

  16. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, New York (2001)

    Book  MATH  Google Scholar 

  17. Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvectorial data. Neural Networks 15(8-9), 945–952 (2002)

    Article  Google Scholar 

  18. Laub, J., Roth, V., Buhmann, J.M., Müller, K.-R.: On the information and representation of non-Euclidean pairwise data. Pattern Recognition 39, 1815–1826 (2006)

    Article  MATH  Google Scholar 

  19. Lundsteen, C., Phillip, J., Granum, E.: Quantitative analysis of 6985 digitized trypsin g-banded human metaphase chromosomes. Clinical Genetics 18, 355–370 (1980)

    Article  Google Scholar 

  20. van der Maaten, L.J.P., Hinton, G.E.: Visualizing high-dimensional data using t-sne. J. of Machine Learning Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  21. Maier, T., Klebel, S., Renner, U., Kostrzewa, M.: Fast and reliable maldi-tof ms–based microorganism identification. Nature Methods (3) (2006)

    Google Scholar 

  22. Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recognition 39(10), 1852–1863 (2006)

    Article  MATH  Google Scholar 

  23. Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition. Foundations and Applications. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  24. Penner, O., Grassberger, P., Paczuski, M.: Sequence Alignment, Mutual Information, and Dissimilarity Measures for Constructing Phylogenies. PLoS ONE 6(1) (2011)

    Google Scholar 

  25. Qin, A.K., Suganthan, P.N.: A novel kernel prototype-based learning algorithm. In: Proc. of ICPR 2004, pp. 621–624 (2004)

    Google Scholar 

  26. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Mozer, M.C., Touretzky, D.S., Hasselmo, M.E. (eds.) Proc. of NIPS 1995, pp. 423–429. MIT Press, Cambridge (1996)

    Google Scholar 

  27. Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Computation 21(12), 3532–3561 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Computation 15(7), 1589–1604 (2003)

    Article  MATH  Google Scholar 

  29. Thomas, J.J., Cook, K.A.: A Visual Analytics Agenda. IEEE Trans. on Computer Graphics and Applications 26(1), 12–19 (2006)

    Google Scholar 

  30. Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. J. of Machine Learning Res. 1, 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Williams, C., Seeger, M.: Using the Nyström method to speed up kernel machines. In: Proc. of NIPS 2000, pp. 682–688. MIT Press (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hammer, B., Mokbel, B., Schleif, FM., Zhu, X. (2012). White Box Classification of Dissimilarity Data. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, SB. (eds) Hybrid Artificial Intelligent Systems. HAIS 2012. Lecture Notes in Computer Science(), vol 7208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28942-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28942-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28941-5

  • Online ISBN: 978-3-642-28942-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics