Skip to main content

Global Seaweed Biogeography Under a Changing Climate: The Prospected Effects of Temperature

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 219))

Abstract

Temperature is one of the most important factors controlling the biogeography of seaweeds. To identify worldwide prospective distributional shifts of major biogeographical regions under a global change scenario, we applied a macroecological modeling approach. We compared the borders of biogeographical regions between present and end of the century sea surface temperatures (SST) taken from global climate model simulations and drew conclusions for distributional changes. All regions will extend towards the poles. As a consequence, the tropical region will widen considerably. However, there will be almost no change in the northern extent of the Antarctic region. According to the model data, the annual SST gradient will change along extensive coastlines creating broad transitional regions, some of which contain high seaweed genus diversity. As a consequence, the structure of the seaweed assemblages in these biogeographical regions will probably be reorganized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersen GS, Stehen H, Christie H, Fredriksen S, Moy FE (2011) Seasonal patterns of sporophyte growth, fertility, fouling, and mortality of Saccharina latissima in Skagerrak, Norway: Implications for forest recovery. J Mar Biol 2011:Article ID 690375

    Google Scholar 

  • Ateweberhan M, Bruggemann JH, Breeman AM (2005) Seasonal patterns of biomass, growth and reproduction in Dictyota cervicornis and Stoechospermum polypodioides (Dictyotales, Phaeophyta) on a shallow reef flat in the southern Red Sea (Eritrea). Bot Mar 48:8–17

    Google Scholar 

  • Augustin L, Barbante C, Barnes PRF, Barnola JM, Bigler M, Castellano E, Cattani O, Chappellaz J, Dahl-Jensen D, Delmonte B, Dreyfus G, Durand G, Falourd S, Fischer H, Flückiger J, Hansson ME, Huybrechts P, Jugie G, Johnsen SJ, Jouzel J, Kaufmann P, Kipfstuhl J, Lambert F, Lipenkov VY, Littot GC, Longinelli A, Lorrain R, Maggi V, Masson-Delmotte V, Miller H, Mulvaney R, Oerlemans J, Oerter H, Orombelli G, Parrenin F, Peel DA, Petit J-R, Raynaud D, Ritz C, Ruth U, Schwander J, Siegenthaler U, Souchez R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tabacco IE, Udisti R, van de Wal RSW, van den Broeke M, Weiss J, Wilhelms F, Winther JG, Wolff EW, Zucchelli M (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628

    PubMed  CAS  Google Scholar 

  • Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coastal Shelf Sci 80:435–471

    Google Scholar 

  • Beaugrand G, Reid PC (2003) Long-term changes in phytoplankton, zooplankton and salmon related to climate. Global Change Biol 9:801–817

    Google Scholar 

  • Berkelmans R (2009) Bleaching and mortality thresholds: How much is too much? In: van Oppen MJH, Lough JM (eds) Coral bleaching: patterns and processes, causes and consequences, Ecol Studies, vol 205. Springer, New York, pp 103–120

    Google Scholar 

  • Bischof K, Gómez I, Molis M, Hanelt D, Karsten U, Lüder U, Roleda MY, Zacher K, Wiencke C (2006) Ultraviolet radiation shapes seaweed communities. Rev Environ Sci Biotechnol 5:141–166

    CAS  Google Scholar 

  • Bischoff B, Wiencke C (1995) Temperature ecotypes and biogeography of Acrosiphoniales (Chlorophyta) with Arctic-Antarctic disjunct and Arctic/cold-temperate distributions. Eur J Phycol 30:19–27

    Google Scholar 

  • Bischoff-Bäsmann B, Wiencke C (1996) Temperature requirements for growth and survival of Antarctic Rhodophyta. J Phycol 32:525–535

    Google Scholar 

  • Bischoff-Bäsmann B, Bartsch I, Xia B, Wiencke C (1997) Temperature responses of macroalgae from the tropical island Hainan (P.R. China). Phycol Res 45:91–104

    Google Scholar 

  • Bolton JJ (1983) Ecoclinal variation in Ectocarpus siliculosus (Phaeophyceae) with respect to temperature growth optima and survival limits. Mar Biol 73:131–138

    Google Scholar 

  • Bolton JJ (1996) Patterns of species diversity and endemism in comparable temperate brown algal floras. Hydrobiologia 327:173–178

    Google Scholar 

  • Bolton JJ, Lüning K (1982) Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Mar Biol 66:89–94

    Google Scholar 

  • Bradley RS (1985) Quaternary paleoclimatology. Allan and Unwin, London

    Google Scholar 

  • Braun M, Gossmann H (2002) Glacial changes in the areas of Admiralty Bay and Potter Cove, King George Island, Maritime Antarctica. In: Beyer L, Bölter M (eds) Geoecology of Antarctic ice-free coastal landscapes, Ecol Studies, vol 154. Springer, Heidelberg, pp 75–90

    Google Scholar 

  • Breeman AM (1988) Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: experimental and phenological evidence. Helgoländer Meeresunters 42:199–241

    Google Scholar 

  • Breeman AM (1990) Expected effects of changing seawater temperatures on the geographic distribution of seaweed species. In: Beukema JJ et al (eds) Expected effects of climatic change on marine coastal ecosystems. Kluwer Academic, Netherlands, pp 69–76

    Google Scholar 

  • Briggs JC (1974) Marine zoogeography. McGraw-Hill, New York

    Google Scholar 

  • Briggs JC (1995) Global biogeography. Elsevier, Amsterdam

    Google Scholar 

  • Brodie J, Bartsch I, Neefus C, Orfanidis S, Bray T, Mathieson AC (2007) New insights into the cryptic diversity of the North Atlantic–Mediterranean ‘Porphyra leucosticta’ complex: P. olivii sp. nov. and P. rosengurttii (Bangiales, Rhodophyta). Eur J Phycol 42:3–28

    CAS  Google Scholar 

  • Cambridge ML, Breeman AM, van den Hoek C (1990) Temperature responses limiting the geographical distribution of two temperate species of Cladophora (Cladophorales; Chlorophyta) in the North Atlantic. Phycologia 29:74–85

    Google Scholar 

  • Campana G, Zacher K, Fricke A, Molis M, Wulff A, Wiencke C (2011) Drivers of colonization and succession in polar benthic macro- and microalgal communities. In: Wiencke C (ed) Biology of polar benthic algae. de Gruyter, Berlin, pp 299–320

    Google Scholar 

  • Camus PA (2001) Biogeografía marina de Chile continental. Rev Chi Hist Nat 74:587–617

    Google Scholar 

  • Carpenter RC (1986) Partitioning herbivory and its effects on coral reefs algal communities. Ecol Monogr 56:345–363

    Google Scholar 

  • CLIMAP Project Members (1981) Seasonal reconstructions of the earth’s surface at the last glacial maximum. The Geological Society of America, Map and Chart Service MC-36, Washington DC

    Google Scholar 

  • Collins M, An S-I, Cai W, Ganachaud A, Guilyardi JF-F, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific ocean and El Niño. Nat Geosci 3:391–397

    CAS  Google Scholar 

  • Cook AJ, Fox AJ, Vaughan DG, Ferrigno JG (2005) Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science 308:541–544

    PubMed  CAS  Google Scholar 

  • Crame JA (1993) Latitudinal range fluctuations in the marine realm through geological time. Trends Ecol Evol 10:1096–1111

    Google Scholar 

  • Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32:197–211

    Google Scholar 

  • Davison IR, Greene RM, Podolak EJ (1991) Temperature acclimation of respiration and photosynthesis in the brown alga Laminaria saccharina. Mar Biol 110:449–454

    Google Scholar 

  • Diaz-Pulido G, McCook LJ, Larkum AWD, Lotze HK, Raven JA, Schaffelke B, Smith JE, Steneck RS S (2007) Vulnerability of macroalgae of the Great Barrier Reef to climate change. In: Johnson JE, Marshall PA (eds) Climate change and the Great Barrier Reef. Great Barrier Reef Marine Park Authority and Australian Greenhouse Office, Townsville, Queensland, pp 153–192

    Google Scholar 

  • Díez I, Muguerza N, Santolaria A, Ganzedo U, Gorostiaga JM (2012) Seaweed assemblage changes in the Eastern Cantabrian Sea and their potential relationship to climate change. Estuar, Coastal Shelf Sci 99:108–120

    Google Scholar 

  • Dring MJ (1984) Photoperiodism and phycology. In: Round F, Chapman DJ (eds) Progress in phycological research, vol 3. Biopress, Bristol, pp 159–192

    Google Scholar 

  • Edgar GJ, Banks SA, Brandt M, Bustamante RH, Chiriboga A, Earle SA, Garske LE, Glynn PW, Grove JS, Henderson S, Hickmam CP, Miller KA, Rivera F, Wellington GM (2010) El Niño, grazers and fisheries interact to greatly elevate extinction risk for Galapagos marine species. Global Change Biol 10:2876–2890

    Google Scholar 

  • Eggert A, Visser RJW, van Hasselt PR, Breeman AM (2006) Differences in acclimation potential of photosynthesis in seven isolates of the tropical to warm temperate macrophyte Valonia utricularis (Chlorophyta). Phycologia 45:546–556

    Google Scholar 

  • Fredersdorf J, Müller R, Becker S, Wiencke W, Bischof K (2009) Interactive effects of radiation, temperature and salinity on different life history stages of the Arctic kelp Alaria esculenta (Phaeophyceae). Oecologia 160:483–492

    PubMed  Google Scholar 

  • Fricke A, Molis M, Wiencke C, Valdivia N, Chapman AS (2011) Effects of UV radiation on the structure of Arctic macrobenthic communities. Polar Biol 34:995–1009

    Google Scholar 

  • Gerard VA, Du Bois KR (1988) Temperature ecotypes near the southern boundary of the kelp Laminaria saccharina. Mar Biol 97:575–580

    Google Scholar 

  • Giaccone G (1972) Struttura, ecologia e corologia dei popolamenti a Laminarie dell stretto di Messina e del mare di Alboran. Mem Biol Mar Ocean NS 2:37–49

    Google Scholar 

  • Graham MH, Kinlan BP, Druehl LD, Garske LE, Banks S (2007) Deep-water kelp refugia as potential hotspots of tropical marine diversity and productivity. Proc Nat Acad Sci USA 104:16576–16580

    PubMed Central  PubMed  CAS  Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Google Scholar 

  • Hansen J, Sato M, Ruedy R, Lo K, Lea DW (2006) Global temperature change. Proc Natl Acad Sci 103:14288–14293

    PubMed Central  PubMed  CAS  Google Scholar 

  • Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine systems. Ecol Lett 9:228–241

    PubMed  Google Scholar 

  • Hawkins SJ, Moore PJ, Burrows MT, Poloczanska E, Mieszkowska N, Herbert RJH, Jenkins SR, Thompson RC, Genner MJ, Southward AJ (2008) Complex interactions in a changing world: Responses of rocky shore communities to recent climate change. Climate Res 37:123–133

    Google Scholar 

  • Hay ME (1997) The ecology and evolution of seaweed-herbivore interactions on coral reefs. Coral Reefs 16:S67–S76

    Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    PubMed  CAS  Google Scholar 

  • Huvé H (1955) Présence de Laminaria rodriguezii Bornet sur les côtes de Mediterraneée. Rec Trav Stat Mar Endoume 15:73, 89 + 11 plates

    Google Scholar 

  • Johannessen O, Bengtsson L, Miles M, Kuzmina S, Semenov V, Alekseev G, Nagurnyi A, Zakharov V, Bobylev L, Pettersson L (2004) Arctic climate change: observed and modeled temperature and sea-ice variability. Tellus 56(A):328–341

    Google Scholar 

  • Johnson CR, Banks SC, Barrett NS, Cazassus F, Dunstan PK, Edgar GJ, Frusher SD, Gardner C, Haddon M, Helidoniotis F, Hill KL, Holbrook NJ, Hosie GW, Last PR, Ling SD, Melbourne-Thomas J, Miller K, Pecl GT, Richardson AJ, Ridgway KR, Rintoul SR, Ritz DA, Ross DJ, Sanderson JC, Shepherd SA, Slotwinski A, Swadling KM, Taw N (2011) Climate change cascades: Shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. J Exp Mar Biol Ecol 400:17–32

    Google Scholar 

  • Jokiel PL, Coles SL (1990) Response of Hawaiian and other Indo-Pacific reef corals to elevated temperature. Coral Reefs 8:155–162

    Google Scholar 

  • Karsten U, Wulff A, Roleda M, Müller R, Steinhoff FS, Fredersdorf J, Wiencke C (2011) Physiological responses of polar benthic algae to ultraviolet radiation. In: Wiencke C (ed) Biology of polar benthic algae. De Gruyter, Berlin, pp 271–298

    Google Scholar 

  • Kerswell AP (2006) Global biodiversity patterns of benthic marine algae. Ecology 87:2479–2488

    PubMed  Google Scholar 

  • Kirihara S, Nakamura T, Kon N, Fujita D, Notoya M (2006) Recent fluctuations in distribution and biomass of cold and warm temperature species of Laminarialean algae at Cape Ohma, northern Honshu, Japan. J Appl Phycol 18:521–527

    Google Scholar 

  • Knutti R, Flückinger J, Stocker TF, Timmermann A (2004) Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation. Nature 430:851–856

    PubMed  CAS  Google Scholar 

  • Kübler JE, Davison IR (1995) Thermal acclimation of light-use characteristics of Chondrus crispus (Rhodophyta). Eur J Phycol 30:189–195

    Google Scholar 

  • Levitus S, Antonov JI, Boyer TP, Stephens C (2000) Warming of the world ocean. Science 287:2225–2229

    CAS  Google Scholar 

  • Lima FP, Ribeiro PA, Queiroz N, Hawkins SJ, Santos AM (2007) Do distributional shifts of northern and southern species of algae match the warming pattern? Glob Change Biol 13:2592–2604

    Google Scholar 

  • Liu PJ, Lin SM, Fan TY, Meng PJ, Shao KT, Lin HJ (2009) Rates of overgrowth by macroalgae and attack by sea anemones are greater for live coral than dead coral under conditions of nutrient enrichment. Limnol Oceanogr 54:1167–1175

    CAS  Google Scholar 

  • Lüning K (1990) Seaweeds: Their environment, biogeography and ecophysiology. Wiley, New York

    Google Scholar 

  • Manzello DP, Berkelmans R, Hendee JC (2007) Coral bleaching indices and thresholds for the Florida reef tract, Bahamas, and St. Croix, US Virgin Islands. Mar Pollut Bull 54:1923–1931

    PubMed  CAS  Google Scholar 

  • Martinson DG, Stammerjohn SE, Iannuzzi RA, Smith RC, Vernet M (2008) Western Antarctic Peninsula physical oceanography and spatio-temporal variability. Deep Sea Res II 55:1964–1987

    Google Scholar 

  • Merzouk A, Johnson LE (2011) Kelp distribution in the northwest Atlantic Ocean under a changing climate. J Exp Mar Biol Ecol 400:90–98

    Google Scholar 

  • Mieszkowska N, Kendall MA, Hawkins SJ, Leaper R, Williamson P, Hardman-Mountfort NJ, Southward AJ (2006) Changes in the range of some common rocky shore species in Britain—a response to climate change? Hydrobiologia 555:241–251

    Google Scholar 

  • Molenaar F (1996) Seasonal growth and reproduction of North Atlantic red seaweeds. PhD dissertation, University of Groningen, Netherlands, p 111

    Google Scholar 

  • Müller R, Wiencke C, Bischof K (2008) Interactive effects of UV radiation and temperature on microstages of Laminariales (Phaeophyceae) from the Arctic and North Sea. Clim Res 37:203–213

    Google Scholar 

  • Müller R, Bartsch I, Laepple T, Wiencke C (2009) Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Bot Mar 52:617–638

    Google Scholar 

  • Müller R, Bartsch I, Laepple T, Wiencke C (2011) Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. In: Wiencke C (ed) Biology of polar benthic algae. De Gruyter, Berlin, pp 237–270

    Google Scholar 

  • Nelson WA (2009) Calcified macroalgae—critical to coastal ecosystems and vulnerable to change: a review. Mar Freshwater Res 60:787–801

    CAS  Google Scholar 

  • Pakker H, Breeman AM, Prud’homme van Reine WF, van den Hoek C (1995) A comparative study of temperature responses of Carribean seaweeds from different biogeographic groups. J Phycol 31:499–507

    Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol Biogeogr 12:361–371

    Google Scholar 

  • Peters AF, Breeman AM (1992) Temperature responses of disjunct temperate brown algae indicate long-distance dispersal of microthalli across the tropics. J Phycol 28:428–438

    Google Scholar 

  • Pianka ER (1966) Latitudinal gradients in species diversity: a review of concepts. Am Natural 100:33–46

    Google Scholar 

  • Pivovarov S, Schlitzer R, Novikhin A (2003) River runoff influence on the water mass formation in the Kara Sea. In: Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance. Elsevier, Amsterdam, pp 9–26

    Google Scholar 

  • Poloczanska ES, Smith S, Fauconnet L, Healy J, Tibbetts IR, Burrows MT, Richardson AJ (2011) Little change in the distribution of rocky shore faunal communities on the Australian east coast after 50 years of rapid warming. J Exp Mar Biol Ecol 400:145–154

    Google Scholar 

  • Provan J, Wattier RA, Maggs CA (2005) Phylogeographic analysis of the red seaweed Palmaria palmata reveals a Pleistocene marine glacial refugium in the English Channel. Mol Ecol 14:793–803

    PubMed  CAS  Google Scholar 

  • Rasher DB, Stout EP, Engel S, Kubanek J, Hay ME (2011) Macroalgal terpernes function as allelopathic agents against reef corals. Proc Natl Acad Sci USA 43:17726–17731

    Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407

    Google Scholar 

  • Rijnsdorp AD, Peck MA, Engelhard GH, Mollmann C, Pinnegar JK (2009) Resolving the effect of climate change on fish populations. ICES J Mar Sci doi:10.1093/icesjms/fsp056

  • Sagarin RD, Barry JB, Gilman SE, Baxter CH (1999) Climate-related change in an intertidal community over short and long time scales. Ecol Monogr 69:465–490

    Google Scholar 

  • Sala E, Knowlton N (2006) Global marine biodiversity trends. Annu Rev Environ Resour 31:93–122

    Google Scholar 

  • Sangil C, Sanson M, Afonso-Carillo J (2011) Spatial variation patterns of subtidal assemblages along a subtropical oceanic archipelago: Thermal gradient vs herbivore pressure. Estuar Coast Shelf Sci 94:322–333

    Google Scholar 

  • Santelices B, Bolton JJ, Meneses I (2009) 6. Marine algal communities. In: Whitman JD, Roy K (eds) Marine macroecology. Chicago University Press, Chicago, pp 153–192

    Google Scholar 

  • Schiel DR, Steinbeck JR, Foster MS (2004) Ten years of induced ocean warming causes comprehensive changes in marine benthic communities. Ecology 85:1833–1839

    Google Scholar 

  • Schmittner A, Latif M, Schneider B (2005) Model projections of the North Atlantic thermohaline circulation for the 21st century assessed by observations. Geophys Res Lett 32:L23710. doi:10.1029/2005GL024368

    Google Scholar 

  • Schofield O, Ducklow HW, Martinson DG, Meredith MP, Moline MA, Fraser WR (2010) How do polar marine ecosystems respond to rapid climate change? Science 328:1529–1523

    Google Scholar 

  • Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24

    CAS  Google Scholar 

  • Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536

    PubMed  CAS  Google Scholar 

  • Snoeijs PJM, Prentice IC (1989) Effects of cooling water discharge on the structure and dynamics of epilithic algal communities in the northern Baltic. Hydrobiologia 184:99–123

    Google Scholar 

  • Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds 2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA, Martin KD, McManus E, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57:573–583

    Google Scholar 

  • Spurkland T, Iken K (2011) Salinity and irradiance effects on growth and maximum photosynthetic quantum yield in subarctic Saccharina latissima (Laminariales, Laminariaceae). Bot Mar 54:355–365

    CAS  Google Scholar 

  • Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-southern oscillation and southern annual mode variability. J Geophys Res 113:C03S90

    Google Scholar 

  • Titlyanov EA, Yakovleva IM, Titlyanova TV (2007) Interaction between benthic algae (Lyngbya bouillonii, Dictyota dichotoma) and scleractinian coral Porites lutea in direct contact. J Exp Mar Biol Ecol 342:282–291

    Google Scholar 

  • Tittensor DP, Mora C, Jetz W, Lotze HK, Ricard D, van den Berghe E, Worm B (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098–1101

    PubMed  CAS  Google Scholar 

  • tom Dieck I (1992) North Pacific and North Atlantic digitate Laminaria species (Phaeophyta): hybridization experiments and temperature responses. Phycologia 31:147–163

    Google Scholar 

  • tom Dieck I, de Oliveira EC (1993) The section Digitatae of the genus Laminaria (Phaeophyta) in the northern and southern Atlantic: crossing experiments and temperature responses. Mar Biol 115:151–160

    Google Scholar 

  • Tronholm A, Steen F, Tyberghein L, Leliaert F, Verbruggen H, Siguan MAR, De Clerk O (2010) Species delimitation, taxonomy, and biogeography of Dictyota in Europe (Dictyotales, Phaeophyceae). J Phycol 46:1301–1321

    Google Scholar 

  • Turner J, Overland JE, Walsh JE (2007) An Arctic and Antarctic perspective on recent climate change. Int J Climatol 27:277–293

    Google Scholar 

  • van den Hoek C (1982a) The distribution of benthic marine algae in relation to the temperature regulation of their life histories. Biol J Linn Soc 18:81–144

    Google Scholar 

  • van den Hoek C (1982b) Phytogeographic distribution groups of benthic marine algae in the North Atlantic Ocean. A review of experimental evidence from life history studies. Helgoländer Meeresunters 35:53–214

    Google Scholar 

  • van den Hoek C, Breeman AM (1989) Seaweed biogeography in the North Atlantic: Where are we now? In: Garbary DJ, South GR (eds) Evolutionary biogeography of the marine algae of the North Atlantic. Springer, Berlin, pp 55–86

    Google Scholar 

  • van der Strate HJ, Boele-Bos SA, Olsen JL, van den Zande L, Stam WT (2002) Phylogeographic studies in the tropical seaweed Cladophoropsis membranacea (Chlorophyta, Ulvophyceae) reveal a cryptic species complex. J Phycol 38:572–582

    Google Scholar 

  • van Oppen MJH, Olsen JL, Stam WT, van den Hoek C, Wiencke C (1993) Arctic-Antarctic disjunctions in the benthic seaweeds Acrosiphonia arcta (Chlorophyta) and Desmarestia viridis/willii (Phaeophyta) are of recent origin. Mar Biol 115:381–386

    Google Scholar 

  • van Oppen MJH, Diekmann OE, Wiencke C, Stam WT, Olsen JL (1994) Tracking dispersal routes: Phylogeography of the Arctic-Antarctic disjunct seaweed Acrosiphonia arcta (Chlorophyta). J Phycol 30:67–80

    Google Scholar 

  • Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274

    Google Scholar 

  • Verbruggen H, Tyberghein L, Pauly K, Vlaeminck C, van Nieuwenhuyze K, Kooistra WHCF, Leliaert F, De Clerk O (2009) Macroecology meets macroevolution: evolutionary niche dynamics in the seaweed Halimeda. Global Ecol Biogeogr 18:393–405

    Google Scholar 

  • Viejo RM, Martínez B, Arrontes J, Astudillo C, Hernández L (2011) Reproductive patterns in central and marginal populations of a large brown seaweed: drastic changes at the southern range limit. Ecography 34:75–84

    Google Scholar 

  • Vroom PS, Timmers MAV (2009) Spatial and temporal comparison of algal biodiversity and benthic cover at Gardner Pinnacles, northwestern Hawai’ian islands. J Phycol 45:337–347

    Google Scholar 

  • Vroom PS, Page KN, Kenyon JC, Brainard RE (2006) Algae-dominated reefs. Am Scientist 94:430–437

    Google Scholar 

  • Vroom PS, Musburger CA, Cooper SW, Maragos JE, Page-Albins KN, Timmers MAV (2010) Marine biological community baselines in unimpacted tropical ecosystems: spatial and temporal analysis of reefs at Howland and Baker Islands. Biodivers Conserv 19:797–812

    Google Scholar 

  • Wanders JBW (1977) The role of benthic algae in the shallow reef of Curaçao (Netherlands Antilles). 3. The significance of grazing. Aquat Bot 3:357–390

    Google Scholar 

  • Weatherhead EC, Andersen SB (2006) The search for signs of recovery of the oregion layer. Nature 441:39–45

    PubMed  CAS  Google Scholar 

  • Wernberg T, Thomsen MS, Tuya F, Kendrick GA, Staehr PA, Toohey BD (2010) Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecol Lett 13:685–694

    PubMed  Google Scholar 

  • Weslawski JM, Wiktor J, Kotwicki L (2010) Increase in biodiversity in the arctic rocky littoral, Sorkappland, Svalbard, after 20 years of climate warming. Mar Biodiv 40:123–130

    Google Scholar 

  • Weslawski JM, Kendall MA, Wlodarska-Kowalczuk M, Iken K, Kedra M, Legezynska J, Sejr MK (2011) Climate change effects on Arctic fjord and coastal macrobenthic diversity—observations and predictions. Mar Biodiv 41:71–85

    Google Scholar 

  • Wiencke C, Bartsch I, Bischoff B, Peters AF, Breeman AM (1994) Temperature requirements and biogeography of Antarctic, Arctic and amphiequatorial seaweeds. Bot Mar 37:247–259

    Google Scholar 

  • Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34:273–309

    Google Scholar 

  • Wiltshire KH, Malzahn M, Wirtz K, Greve W, Janisch S, Mangelsdorf P, Manly BFJ, Boersma M (2008) Resilience of North Sea phytoplankton spring bloom dynamics: an analysis of long-term data at Helgoland Roads. Limnol Oceanogr 53:1294–1302

    Google Scholar 

  • Yarish C, Breeman AM, van den Hoek C (1984) Temperature, light and photoperiod responses of some Northeast American and west European endemic rhodophytes in relation to their geographic distribution. Helgoländer Meeresunters 38:273–304

    Google Scholar 

  • Zacher K, Wulff A, Molis M, Hanelt D, Wiencke C (2007) Ultraviolet radiation and consumer effects on a field-grown intertidal macroalgal assemblage in Antarctica. Global Change Biol 13:1201–1215

    Google Scholar 

  • Zacher K, Rautenberger R, Hanelt D, Wulff A, Wiencke C (2011) The abiotic environment of polar marine benthic algae. In: Wiencke C (ed) Biology of polar benthic algae. De Gruyter, Berlin, pp 9–21

    Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RE (2008) An early Cenozoic perspective on green house warming and carbon-cycle dynamics. Nature 451:279–283

    PubMed  CAS  Google Scholar 

  • Zardi GI, Nicastro KR, Canovas F, Costa JF, Serrão EA, Pearson GA (2011) Adaptive traits are maintained on steep selective gradients despite gene flow and hybridization in the intertidal region. PLoS One 6(e19402):1–12

    Google Scholar 

  • Zuccarello GC, Buchanan J, West JA, Pedroche FF (2011) Genetic diversity of the mangrove-associated alga Bostrychia radicans/Bostrychia moritziana (Ceramiales, Rhodophyta) from southern Central America. Phycol Res 59:98–104

    Google Scholar 

  • Žuljević A, Antolić B, Nikolić V, Isajlović I (2011) Review of Laminaria rodriguezii records in the Adriatic Sea. 5th European Phycological Congress, Abstract Book, p 194

    Google Scholar 

Download references

Acknowledgements

We acknowledge the modeling group WCRP’s Working Group on Coupled Modelling (WGCM) for making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. The authors thank R. Müller and C. Buchholz for helpful advice on an earlier draft of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inka Bartsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bartsch, I., Wiencke, C., Laepple, T. (2012). Global Seaweed Biogeography Under a Changing Climate: The Prospected Effects of Temperature. In: Wiencke, C., Bischof, K. (eds) Seaweed Biology. Ecological Studies, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28451-9_18

Download citation

Publish with us

Policies and ethics