Skip to main content

Artificial Neural Networks Applications in Dialysis

  • Chapter
Modeling and Control of Dialysis Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 405))

Abstract

Artificial Neural Networks are mathematical models resembling the brain behavior. They have the ability to “learn” from the “environment” and produce responses as a consequence of this learning process. They were broadly used in medicine both as a classification model as well as a prediction tool. In hemodialysis they were used for molecular modeling in the estimation of equilibrated urea concentration, as a monitoring strategy for online treatment analysis and also for bed side models for hemodialysis adequacy evaluation. In this chapter the basic concepts of artificial neural models are introduced and a complete application in equilibrated urea estimation in hemodialized patients is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alloati, S., Molino, A., Manes, M., Bosticardo, G.M.: Urea rebound and effectively delivered dialysis dose. Nephrol. Dial. Transplant. 13(6), 25–30 (1998)

    Article  Google Scholar 

  • Azar, A.T., Wahba, K.M.: Artificial Neural Network for Prediction of Equilibrated Dialysis Dose without Intradialytic Sample. Saudi J. Kidney Dis. Transpl. 22(4), 705–711 (2011)

    Google Scholar 

  • Azar, A.T., Balas, V.E., Olariu, T.: Artificial Neural Network for Accurate Prediction of Post-Dialysis Urea Rebound (2010), doi: 10.1109/SOFA.2010.5565606

    Google Scholar 

  • Bhaskaran, S., Tobe, S., Saiphoo, C., et al.: Blood urea levels 30 minutes before the end of dialysis are equivalent to equilibrated blood urea. ASAIO J. 43(5), M759–M762 (1997)

    Article  Google Scholar 

  • Barro, S., Mira, J.: Computación Neuronal. Servicio de Publica-ciones de la. Universidad de Santiago de Compostela (1995)

    Google Scholar 

  • Beale, M.H., Hagan, M.T., Demuth, H.B.: Neural Network ToolboxTM 7 User’s Guide (September 2010), http://www.mathworks.com/help/pdf_doc/nnet/nnet.pdf

  • Bland, J.M., Altman, D.G.: Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 8, 307–310 (1986)

    Article  Google Scholar 

  • Canaud, B., Bosc, J.Y., Leblanc, M., et al.: A simple and accurate method to determine equilibrated post-dialysis urea concentration. Kidney Int. 51(6), 2000–2005 (1997)

    Article  Google Scholar 

  • Chiu, J., Chong, C., Lin, Y., Wu, C., Wang, Y., Li, Y.: Applying and Artificial Neural Network to predict Total Body Water in Hemodialysis patients. Am. J. Nephrol. 25(5), 507–513 (2005), doi:10.1159/000088279

    Article  Google Scholar 

  • Daugirdas, J.T.: Second generation logarithmic estimates of single-pool variable volume Kt/V: an analysis of error. J. Am. Soc. Nephrol. 4(5), 1205–1213 (1993)

    Google Scholar 

  • Daugirdas, J.T.: Simplified equations for monitoring Kt/V, PCRn, eKt/V, and ePCRn. Adv. Ren. Replace. Ther. 2(4), 295–304 (1995)

    Google Scholar 

  • Daugirdas, J.T., Schneditz, D.: Overestimation of hemodialysis dose depends on dialysis efficiency by regional blood flow but not by conventional two pool urea kinetic analysis. ASAIO J. 41(3), M719–M724 (1995)

    Article  Google Scholar 

  • Daugirdas, J.T., Depner, T.A., Gotch, F.A., et al.: Comparison of methods to predict equilibrated Kt/V in the HEMO Pilot Study. Kidney Int. 52(5), 1395–1404 (1997)

    Article  Google Scholar 

  • Drachman, D.: Do we have brain to spare? Neurology 64(12), 2004–2005 (2005), doi:10.1212/01.WNL.0000166914.38327.BB

    Article  Google Scholar 

  • Fernandez, E.A., Valtuille, R., Willshaw, P., Perazzo, C.A.: Using Artificial Intelligence to Predict the Equilibrated Post-dialysis. Blood Urea Concentration Blood Purif. 19(3), 271–285 (2001)

    Google Scholar 

  • Fernandez, E.A., Valtuille, R., Willshaw, P., Perazzo, C.A.: Dialysate-side Urea Kinetics. Neural Network Predicts Dialysis Dose During Dialysis. Med. Biol. Eng. Comput. 41(4), 392–396 (2003)

    Article  Google Scholar 

  • Fernandez, E.A., Valtuille, R., Presedo, J., Willshaw, P.: Comparison of different methods for hemodialysis evaluation by means of ROC curves: from artificial intelligence to current methods. Clinical Nephrology 64(3), 205–213 (2005a)

    Google Scholar 

  • Fernandez, E.A., Valtuille, R., Presedo, J., et al.: Comparison of standard and artificial neural network estimators of hemodialysis adequacy. Artificial Organs 29(2), 159–165 (2005b)

    Article  Google Scholar 

  • Gabutti, L., Vadilonga, D., Mombelli, G., Burnier, M., Marone, C.: Artificial neural networks improve the prediction of Kt/V, follow-up dietary protein intake and hypotension risk in haemodialysis patients. Nephrol Dial Transplant. 19(5), 1204–1211 (2004a)

    Article  Google Scholar 

  • Gabutti, L., Burnier, M., Mombelli, G., Malé, F., Pellegrini, L., Marone, C.: Usefulness of artificial neural networks to predict follow-up dietary protein intake in hemodialysis patients. Kidney Int. 66(1), 399–407 (2004b)

    Article  Google Scholar 

  • Gotch, F., Sargent, A.: A mechanistic analysis of the National Cooperative Dialysis Study. Kidney Int. 28(3), 526–534 (1985)

    Article  Google Scholar 

  • Guh, J., Yang, C., Yang, J., Chen, L., Lai, Y.: Prediction of equilibrated postdialysis BUN by an artificial neural network in high-efficiency hemodialysis. Am. J. Kidney. Dis. 31(4), 638–646 (1998)

    Article  Google Scholar 

  • Hagan, M., Menhaj, M.: Training feed-forward networks with the Marquardt algorithm. IEEE Trans. on Neural. Netw. 5, 989–993 (1994)

    Article  Google Scholar 

  • Haykin, S.: Neural Networks. A Comprehensive Foundation, 2nd edn. Prentice Hall, USA (1999)

    MATH  Google Scholar 

  • Hopfield, J.J.: Neural Networks and Physical Systems with Emergent Collective Computational Abilities. Proceedings of the National Academy of Sciences of the USA 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  • Kaufman, A.M., Schneditz, D., Smye, S.W., et al.: Solute disequlibrium and multicompartment modeling. Adv. Ren. Replac. Ther. 2(4), 319–329 (1995)

    Google Scholar 

  • Kosko, B.: Neural Networks and Fuzzy Systems. Prentice Hall, USA (1992)

    MATH  Google Scholar 

  • Kohonen, T.: Self-Organizing Maps, 2nd edn. Springer, Heidelberg (1997)

    Book  MATH  Google Scholar 

  • Lowrie, E.G., Lew, N.L.: The urea reducton ratio (URR): a simple method for evaluating haemodialysis treatment. Contemp. Dial. Nephrol. 12, 11–20 (1991)

    Google Scholar 

  • Maduell, F., Garcia-Valdecasas, J., et al.: Validation of different methods to calculate Kt/V considering post-dialysis rebound. Nephrol. Dial. Transplant. 12(9), 1928–1933 (1997)

    Article  Google Scholar 

  • Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, MIT Press, Cambridge (1986)

    Google Scholar 

  • Smye, S.W., Evans, J.H., Will, E., Brocklebank, J.T.: Paediatric haemodialysis: Estimation of treatment efficiency in the presence of urea rebound. Clin. Phys. Physiol. Meas. 13(1), 51–62 (1992)

    Article  Google Scholar 

  • Smye, S.W., Hydon, P.E., Will, E.: An Analysis of the Single-Pool Urea Kinetic Model and Estimation of Errors. Phys. Med. Biol. 38(1), 115–122 (1993)

    Article  Google Scholar 

  • Smye, S.W., Dunderdale, E., Brownridgr, G., Will, E.: Estimation of treatment dose in high-efficiency hemodialysis. Nephron 67(1), 24–29 (1994)

    Article  Google Scholar 

  • Tattersall, J.E., DeTakats, D., Chamney, P., et al.: The post dialysis rebound: predicting and quantifying its effect on Kt/V. Kidney Int. 50(6), 2094–2102 (1996)

    Article  Google Scholar 

  • National Kidney Foundation (2000), http://www.nkf.org

  • NKF-DOQI guidelines, http://www.kidney.org

  • European Best Practice Guidelines for Hemodialysis (EBPGH), http://www.ndt-educational.org/guidelines.asp

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmer A. Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fernández, E.A., Valtuille, R., Balzarini, M. (2013). Artificial Neural Networks Applications in Dialysis. In: Azar, A. (eds) Modeling and Control of Dialysis Systems. Studies in Computational Intelligence, vol 405. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27558-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27558-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27557-9

  • Online ISBN: 978-3-642-27558-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics